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Abstract. Let ω(G) denote the number of orbits on the elements of a group G
under the action of its automorphism group. We determine all finite simple groups
G such that ω(G) ≤ 100.

1. Introduction

Let G be a finite group. Let ω(G), its orbit number, denote the number of orbits on
the elements of G under the action of its automorphism group. In a sense, the orbit
number tells us how many different ‘kinds’ of elements G has. Various results on
orbit numbers have appeared in the literature. The study was initiated by Laffey and
MacHale [14] who classified groups with orbit number at most 3 (all are solvable),
showed that A5 is the only non-solvable group with 4 orbits, and gave a structure
theorem for certain solvable groups with orbit number 4. Those non-solvable groups
with orbit number 5 were classified in [2]. Dantas, Garonzi and Bastos [8] classified
those with orbit number 6 and showed that there are infinitely many with orbit
number 7. Bastos and Dantas [3] gave structure theorems for those infinite groups
which have both finite conjugacy classes and finite orbit number.

Of particular interest are the finite non-abelian simple groups. Kohl [12] determined
the orbit numbers for all minimal simple groups. In [13] he showed that for every
positive integer n there are only finitely many finite non-abelian simple groups having
orbit number n and classified those with orbit number at most 17. Here we extend
this classification to all simple groups G satisfying ω(G) ≤ 100. Like in [13], the
limiting factors were the available algorithms and the available computing resources.
Extending the classification significantly beyond 100 orbits will require improved
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We thank Derek Holt, Frank Lübeck and Robert A. Wilson for their assistance. Jafari’s work

was supported financially by the Vice Chancellorship of Research and Technology of the University
of Kurdistan under research Project No. 98/11/2721. O’Brien’s work was partially supported by
the Marsden Fund of New Zealand via grant UOA 1323.

1



2 LEYLI JAFARI, STEFAN KOHL, AND E.A. O’BRIEN

algorithms (in the optimal case: orbit number formulas for all series of finite simple
groups) or better computer hardware.

We consider the alternating groups, the sporadic simple groups, and the finite simple
groups of Lie type in turn. We summarise the resulting classification in Table 2.

2. The alternating groups

The orbit number for an alternating group An (n 6= 6) equals the number of parti-
tions of n which have an even number of even parts.

If ω(An) ≤ 100 then n ≤ 15. In summary: ω(A5) = 4, ω(A6) = 5, ω(A7) = 8,
ω(A8) = 12, ω(A9) = 16, ω(A10) = 22, ω(A11) = 29, ω(A12) = 40, ω(A13) = 52,
ω(A14) = 69, and ω(A15) = 90.

3. The sporadic simple groups

The orbit number of a sporadic simple group G can be deduced from [6, 7].

If G has no outer automorphism, then its orbit number ω(G) equals its class number
h(G). Hence ω(M11) = 10, ω(M23) = 17, ω(M24) = 26, ω(Co3) = 42, ω(Co2) = 60,
ω(Co1) = 101, ω(Fi23) = 98, ω(Th) = 48, ω(J1) = 15, ω(Ly) = 53, ω(Ru) = 36,
ω(J4) = 62, ω(B) = 184 and ω(M) = 194.

If G has index 2 in its automorphism group, then we can read off which pairs of
classes are fused by outer automorphisms. In summary: ω(M12) = 12, ω(M22) = 11,
ω(J2) = 16, ω(2F4(2)′) = 17, ω(HS) = 21, ω(J3) = 17, ω(McL) = 19, ω(He) = 26,
ω(Suz) = 37, ω(O′N) = 25, ω(Fi22) = 59, ω(HN) = 44, and ω(Fi′24) = 97.

4. The finite simple groups of Lie type

We record a basic observation which is surprisingly useful.

Remark 4.1. The orbit number of a group G is at least⌈
1 +

h(G)− 1

|Out(G)|

⌉
,

where h(G) is the number of conjugacy classes and Out(G) is the outer automor-
phism group of G.
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Consider [13, Theorem 2.1, Part (2)]: if G is a simple group of Lie rank l over Fpf ,
then

ω(G) ≥ h(G)

|Out(G)|
≥ plf

6l(l + 1)f
.

For 312 triples (l, p, f) the rightmost expression is at most 100. For each finite
simple group G determined by a triple, we check whether the lower bound for ω(G)
given in [13, Theorem 2.1, Part (3)] is greater than 100. By also employing the
bounds from [13, Theorem 2.2] for ω(PSL(n, q)), we can restrict to the following
“candidate” simple groups of Lie type.

• The groups PSL(2, pf )
– for f = 1 and primes 7 ≤ p ≤ 199,
– for f = 2 and primes 3 ≤ p ≤ 19,
– for f = 3 and p ∈ {2, 3, 5, 7},
– for f = 4 and p ∈ {2, 3, 5},
– for f ∈ {5, 6} and p ∈ {2, 3}, and
– for f ∈ {7, 8, 9} and p = 2;

and the groups PSL(n, q)
– for n = 3 and q ∈ {3, 4, 5, 7, 8, 9, 11, 13, 16, 19, 25},
– for n = 4 and q ∈ {3, 4, 5, 7, 8, 9},
– for n ∈ {5, 6} and q ∈ {2, 3, 4}, and
– for n ∈ {7, 8} and q = 2.

• The groups PSU(n, q)
– for n = 3 and q ∈ {3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 23, 29, 32, 41},
– for n = 4 and q ∈ {2, 3, 4, 5, 7, 8, 9, 11},
– for n = 5 and q ∈ {2, 3, 4, 9},
– for n = 6 and q ∈ {2, 3, 5}, and
– for (n, q) ∈ {(7, 2), (8, 2), (8, 3), (9, 2)}.

• The groups O(n, q)
– for n = 5 and q ∈ {4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 25, 27},
– for n = 7 and q ∈ {2, 3, 4, 5, 7, 9}, and
– for (n, q) ∈ {(9, 2), (9, 3), (11, 2), (11, 3), (13, 2)}.

• The groups Sz(q) for q ∈ {8, 32, 128, 512}.
• The groups PSp(n, q) for (n, q) ∈ {(6, 3), (6, 5), (6, 7), (6, 9), (8, 3), (10, 3)}.
• The groups O+(n, q)

– for n = 8 and q ∈ {2, 3, 4, 5, 7, 9}, and
– for (n, q) ∈ {(10, 2), (10, 3), (10, 5), (12, 2), (12, 3), (14, 2)}.

• The groups O−(n, q)
– for n = 8 and q ∈ {2, 3, 4, 5}, and
– for (n, q) ∈ {(10, 2), (10, 3), (12, 2), (12, 3), (14, 2), (14, 3)}.

• The groups 3D4(2), 3D4(3) and 3D4(4).
• The groups G2(q) for q ∈ {3, 4, 5, 7, 8, 9, 16}.
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• The group 2G2(27) = Ree(27).
• The groups F4(2), F4(3) and F4(4).
• The group 2F4(8) = Ree(8).
• The groups E6(2) and 2E6(2).

We now consider each collection of groups in turn. Sometimes (lower bounds to)
class or orbit numbers were known from existing sources, including [4], the Atlas
[7], and Lübeck’s database [10]. Explicit values were computed using GAP [11]
and Magma [5]. Computations with larger groups relied on the infrastructure
of [1] available in Magma, and minimal-degree permutation representations for
automorphism groups of simple groups provided by Derek Holt.

Remark 4.2. In three cases the minimal-degree permutation representations were
infeasibly large for direct computations. We sketch an alternative approach, in
which all computations were carried out within the natural representation of the
corresponding quasisimple group. Recently, De Franceschi, Liebeck and O’Brien
developed algorithms to list conjugacy classes in quasisimple matrix groups G, and
to decide quickly if elements of G are conjugate; see [9] for related discussion. The
resulting algorithms are implemented in Magma. We used them to list explicitly
the conjugacy classes for G = SU(5, 9), SU(6, 5), Ω+(8, 9). Let z generate Z(G),
the centre of G. We now readily identify the class representatives for G/Z(G) as
matrices in G by using our machinery to decide conjugacy between a class repre-
sentative g of G and gzi for proper divisors i of |z|. In all three cases, the action
of the outer automorphisms on the classes of G/Z(G) can be realised by action
on these matrices. The field automorphism is realised by applying an appropriate
Frobenius automorphism to an element of G. For PSU(5, 9) and PSU(6, 5), the
diagonal automorphisms are realised by conjugating elements of G by an element
from GU(5, 9) and GU(6, 5) of determinant 10 and 6 respectively. For O+(8, 9) we
realise diagonal and graph automorphisms by conjugating elements of G by gener-
ators of CGO+(8, 9), the conformal group which preserves the form up to a scalar.
The triality automorphism does not lift to Ω+(8, 9), but we can define a function on
elements of Ω+(8, 9) which induces the automorphism on O+(8, 9); see [1, Section
10] for related discussion. We are grateful to Derek Holt for assistance in realising
this approach.

• From [12, Theorem 2.5, Part (2)], we know formulae for the orbit numbers
of PSL(2, pf ) in odd characteristic:

– ω(PSL(2, p)) = 1
2
(p + 3),

– ω(PSL(2, p2)) = 1
4
(p2 + 2p + 5),

– ω(PSL(2, p3)) = 1
6
(p3 + 2p + 9),

– ω(PSL(2, p4)) = 1
8
(p4 + 2p2 + 4p + 9),

– ω(PSL(2, p5)) = 1
10

(p5 + 4p + 15) and
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– ω(PSL(2, p6)) = 1
12

(p6 + 2p3 + 2p2 + 4p + 15).

We deduce that all the candidate groups PSL(2, pf ), apart from PSL(2, 199)
and PSL(2, 361), have orbit numbers at most 100.

From [12, Theorem 2.5, Part (1)], we obtain the orbit numbers for PSL(2, q)
in characteristic 2.

The orbit numbers for PSL(3, q) for q ≤ 8 and q = 16 were computed
in [13]. Since h(PSL(8, 2)) = 246 and |Out(PSL(8, 2))| = 2, by Remark 4.1
we deduce that ω(PSL(8, 2)) ≥ 1 + (246− 1)/2 > 100. The remaining orbit
numbers for PSL(n, q) were computed using GAP and Magma.
• The values ω(PSU(3, q)) for q ∈ {3, 4, 5, 8} and ω(PSU(4, q)) for q ∈ {2, 3}

were computed in [13]. Since PSU(4, 8) has 602 conjugacy classes and
|Out(PSL(4, 8))| = 6, by Remark 4.1 we deduce that ω(PSU(4, 8)) ≥ 102.

For PSU(7, 2), PSU(8, 2) and PSU(8, 3), the same approach shows that
there are more than 100 orbits under the action of the automorphism group.

Note h(PSU(5, 9)) = 1520 and |Out(PSU(5, 9))| = 20; and h(PSU(6, 5)) =
752 and |Out(PSU(6, 5))| = 12. In each case, following Remark 4.2, we
deduce that the orbit number is greater than 100.

The orbit numbers for the remaining PSU(n, q) were computed using GAP
and Magma.
• The value ω(O(5, 4)) was computed in [13]. The orbit numbers for the re-

maining O(5, q), apart from O(5, 17) and O(5, 19), and for the remaining
O(7, q), apart from O(7, 7), were computed using GAP and Magma. The
orbit and class number for O(9, 2) coincide since its outer automorphism
group is trivial. By Remark 4.1, we deduce that the remaining O(n, q) have
more than 100 automorphism orbits.
• The orbit numbers for ω(Sz(q)) are deduced from Theorem 3.4 in [12] which

states that ω(Sz(q)) = ω(PSL(2, q)) + 2.
• The values ω(PSp(6, 3)) and ω(PSp(6, 5)) were computed using GAP and
Magma respectively. By Remark 4.1, we deduce that the remaining PSp(n, q)
have more than 100 automorphism orbits.
• The values ω(O+(8, q)) for q ∈ {2, 3, 4, 5, 7} and ω(O+(10, q)) for q ∈ {2, 3}

were computed using GAP and Magma.
Note h(O+(8, 9)) = 2262 and |Out(O+(8, 9))| = 48; following Remark 4.2,

we deduce that the orbit number is 348.
By Remark 4.1, we deduce that the remaining O+(n, q) have more than

100 automorphism orbits, by using sufficiently good lower bounds for the
class numbers.
• The values ω(O−(8, q)) for q ∈ {2, 3, 4} and ω(O−(10, q)) for q ∈ {2, 3}

were computed using GAP and Magma. By Remark 4.1, we deduce that
the remaining O−(n, q) have more than 100 automorphism orbits, by using
sufficiently good lower bounds for the class numbers.
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• The values 3D4(q) for q ∈ {2, 3, 4} were computed using GAP and Magma.
• The values ω(G2(3)) and ω(G2(4)) were computed in [13], and the values
ω(G2(5)) and ω(G2(7)) were computed using GAP. By Remark 4.1, we deduce
that the remaining G2(q) have more than 100 automorphism orbits.
• The value ω(Ree(27)) was computed in [13].
• The orbit number for F4(2) was computed using Magma. By Remark 4.1,

we deduce that F4(3) and F4(4) have more than 100 automorphism orbits.
• The value ω(Ree(8)) was determined independently by Frank Lübeck and

Robert A. Wilson using the character table and insights on fusion of classes.
• The orbit number for E6(2) was computed using Magma. The value ω(2E6(2))

was determined by Wilson using an approach similar to that for ω(Ree(8)).

As part of this project, we determined ω(G) for some groups G omitted from our final
classification because ω(G) > 100; since this data may be of independent interest,
we record it in Table 1.

Table 1. Some finite simple groups G with ω(G) > 100.

G ω(G) G ω(G) G ω(G)
PSL(4, 7) 137 PSU(4, 11) 232 O(7, 9) 307
PSL(4, 8) 119 PSU(5, 9) 424 PSp(6, 5) 133
PSL(5, 4) 110 PSU(6, 3) 156 O+(8, 5) 116
PSL(6, 3) 122 PSU(6, 5) 436 O+(8, 7) 290
PSL(6, 4) 169 PSU(9, 2) 240 O+(8, 9) 348
PSU(3, 23) 106 O(5, 13) 115 O+(10, 3) 268
PSU(3, 29) 162 O(5, 25) 203 O−(8, 4) 133
PSU(3, 41) 310 O(5, 27) 151 O−(10, 3) 151
PSU(4, 9) 142 O(7, 5) 136 E6(2) 132

5. The classification

We summarise the resulting classification. We observe that there is no finite simple
group G such that ω(G) ∈ {18, 47, 49, 51, 54, 66, 68, 74, 79, 86, 94, 95, 96, 99}. For
completeness, we include the list from [12] of those groups having orbit number at
most 17; note that ω(PSL(3, 7)) = 15, not 16 as claimed there.

Theorem 5.1. The finite non-abelian simple groups G with ω(G) ≤ 100 are listed
in Table 2 where each isomorphism type occurs precisely once.
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Table 2: Finite simple groups G for given ω(G) ≤ 100.

n Finite simple groups G satisfying ω(G) = n
4 PSL(2, 4) ∼= PSL(2, 5) ∼= A5

5 PSL(2, 7) ∼= PSL(3, 2), PSL(2, 9) ∼= A6, PSL(2, 8)
6 PSL(3, 4)
7 PSL(2, 11), PSL(2, 16), PSL(2, 27), Sz(8)
8 PSL(2, 13), A7

9 PSL(3, 3), PSL(2, 32), PSU(3, 4)
10 PSL(2, 17), PSU(3, 3), PSL(2, 25), M11, PSU(3, 5), PSU(3, 8)
11 PSL(2, 19), M22, Sz(32)
12 PSL(4, 2) ∼= A8, M12, O(5, 4)
13 PSL(2, 23)
14 PSU(4, 3)
15 PSU(4, 2) ∼= O(5, 3), J1, PSL(2, 64), PSL(2, 81), PSL(3, 7)
16 PSL(2, 29), A9, J2

17 PSL(2, 31), PSL(2, 49), G2(3), M23, PSL(3, 8), 2F4(2)′, J3

18
19 PSL(3, 5), McL, Ree(27)
20 PSL(2, 37), PSL(5, 2), PSL(3, 16)
21 PSL(2, 128), PSL(4, 3), HS, 3D4(2), O(5, 8)
22 PSL(2, 41), A10

23 PSL(2, 43), Sz(128)
24 PSL(2, 125), G2(4)
25 PSL(2, 47), O′N
26 M24, He
27 O(5, 5), PSL(2, 243), O+(8, 2)
28 PSL(2, 53)
29 A11, PSU(3, 9)
30 O(7, 2), PSU(5, 2), PSU(3, 11)
31 PSL(2, 59)
32 PSL(2, 61), PSL(3, 9)
33 O−(8, 2)
34 PSU(3, 7), PSL(4, 5), PSU(5, 4), PSU(6, 2)
35 PSL(2, 67), PSU(4, 4)
36 PSL(4, 4), Ru
37 PSL(2, 71), PSL(2, 121), PSL(2, 256), Suz
38 PSL(2, 73), O+(8, 3)
39 PSL(3, 13)
40 A12, PSU(3, 16)

To be continued.
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Continued.

n Simple groups G satisfying ω(G) = n
41 PSL(2, 79), O(5, 9)
42 PSU(3, 32), Co3

43 PSL(2, 83), O(5, 7)
44 G2(5), PSL(6, 2), HN
45 O(5, 16)
46 PSL(2, 89)
47
48 Th
49
50 PSL(2, 97), PSL(2, 169), PSp(6, 3)
51
52 PSL(2, 101), A13, O(7, 3)
53 PSL(2, 103), Ly
54
55 PSL(2, 107)
56 PSL(2, 109), 3D4(3)
57 Ree(8)
58 PSL(2, 113)
59 Fi22
60 Co2

61 PSL(2, 343), PSL(2, 512)
62 PSU(3, 17), F4(2), J4

63 Sz(512)
64 PSU(4, 5)
65 PSL(2, 127)
66
67 PSL(2, 131)
68
69 PSL(2, 729), A14

70 PSL(2, 137)
71 PSL(2, 139)
72 PSL(3, 25), PSL(5, 3), G2(7)
73 PSL(3, 11)
74
75 PSL(3, 19), O(7, 4)
76 PSL(2, 149), PSU(4, 7)
77 PSL(2, 151), O−(8, 3), PSL(7, 2)
78 3D4(4)

To be continued.
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Continued.

n Simple groups G satisfying ω(G) = n
79
80 PSL(2, 157)
81 O(9, 2)
82 PSL(2, 289)
83 PSL(2, 163)
84 O+(10, 2), O+(8, 4)
85 PSL(2, 167), PSL(4, 9)
86
87 O(5, 11)
88 PSL(2, 173), PSL(2, 625)
89 PSU(5, 3)
90 A15

91 PSL(2, 179), 2E6(2)
92 PSL(2, 181)
93 O−(10, 2)
94
95
96
97 PSL(2, 191), Fi′24
98 PSL(2, 193), Fi23
99

100 PSL(2, 197), PSU(3, 13)
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