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ABSTRACT. In this paper we exhibit a permutation group which acts transitively on N0 if
and only if the Collatz conjecture holds. We also give an infinite series of finitely generated
simple groups many of which contain this group as a subgroup, and whose intersection is
isomorphic to Thompson’s group V.

1. INTRODUCTION

By r(m) we denote the residue class r +mZ, where we assume that 0 6 r < m. The
Collatz conjecture asserts that iterated application of the mapping

C : Z→ Z, n 7→

{
n
2 if n ∈ 0(2),

3n+ 1 if n ∈ 1(2),

to any positive integer yields 1 after a finite number of steps (cf. Lagarias [7], [8]).
The mappingC is surjective, but not injective. It is affine on residue classes, and it maps

negative to negative and nonnegative to nonnegative integers. The most basic bijective
mappings which share the latter properties are those which interchange two disjoint residue
classes:

Definition 1.1. Given disjoint residue classes r1(m1) and r2(m2) of Z, let the class trans-
position τr1(m1),r2(m2) be the permutation which interchanges r1+km1 and r2+km2 for
each integer k and which fixes all other points.

Note that the set of all class transpositions generates a countable simple group CT(Z) <
Sym(Z) which has a rich class of subgroups, cf. [5]. In this paper we exhibit subgroups of
CT(Z) which act transitively on the set of nonnegative integers in their support if and only
if the Collatz conjecture holds:

Proposition 1.2. The following hold:
a) The group GC := 〈τ1(2),4(6), τ1(3),2(6), τ2(3),4(6)〉 acts transitively on N \ 0(6) if and

only if the Collatz conjecture holds.
b) The group GT := 〈τ0(2),1(2), τ1(2),2(4), τ1(4),2(6)〉 acts transitively on N0 if and only if

the Collatz conjecture holds.

By Corollary 3.7 in [5], the following subgroups of CT(Z) are simple as long as 2 ∈ P:

Definition 1.3. Given a set P of prime numbers, let CTP(Z) 6 CT(Z) denote the sub-
group which is generated by all class transpositions τr1(m1),r2(m2) for which all prime
factors of m1 and m2 lie in P.

Both GC and GT are subgroups of CT{2,3}(Z).
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Remark 1.4. The group CT{2}(Z) is isomorphic to Higman’s group G2,1 defined in [3].
This finitely presented infinite simple group is usually treated in the literature under the
name Thompson’s group V.

The isomorphism between CT{2}(Z) and Thompson’s group V has been pointed out
by John P. McDermott in response to the question of the author which known simple group
the former group would be isomorphic to.

If |P| > 1, the group CTP(Z) has no underlying tree structure. This makes the situation
notably more complicated. Anyway if P is finite, then CTP(Z) is still finitely generated –
cf. Theorem 3.2.

2. A PERMUTATION GROUP EQUIVALENT OF THE COLLATZ CONJECTURE

In this section we prove Proposition 1.2.

Proposition 2.1. Let a := τ1(2),4(6), b := τ1(3),2(6) and c := τ2(3),4(6). Then the group
GC := 〈a, b, c〉 < CT(Z) acts transitively on N \ 0(6) if and only if the Collatz conjecture
holds.

Proof. We observe that C−1(0(3)) = 0(6) ⊂ 0(3), that the restrictions of C and a to 3(6)
are the same and map this residue class to 10(18) ⊂ Z \ 0(3), that 10(18)a = 3(6), and
that no trajectory of C contains only multiples of 3. Therefore it suffices to show that for
any n ∈ N \ 0(3) we have {n, na, nb, nc} = {n} ∪ {nC} ∪ C−1(n). We treat four cases:

n mod 6 n na nb nc n nC C−1(n)
1 n 3n+ 1 2n n n 3n+ 1 {2n}
2 n n n

2 2n n n
2 {2n}

4 n n−1
3 2n n

2 n n
2 {n−13 , 2n}

5 n 3n+ 1 n 2n n 3n+ 1 {2n}

hence the proposition is proved. �

With a little more effort, we can get rid of the set 0(6) of fixed points:

Proposition 2.2. Let a := τ0(2),1(2), b := τ1(2),2(4) and c := τ1(4),2(6). Then the group
GT := 〈a, b, c〉 < CT(Z) acts transitively on N0 if and only if the Collatz conjecture
holds.

Proof. Let

T : Z→ Z, n 7→

{
n
2 if n ∈ 0(2),
3n+1

2 if n ∈ 1(2),

be the Collatz mapping, and put

f : Z→ Z, n 7→


nac = 3n+4

2 if n ∈ 0(4),

nc = 3n+1
2 if n ∈ 1(4),

nb = n
2 if n ∈ 2(4),

naba = n−3
2 if n ∈ 3(4),

and

r : Z→ Z, n 7→

{
2n− 2 if n ∈ 0(3) ∪ 2(3),

2n− 1 if n ∈ 1(3).
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Then rf and Tr coincide on Z \ 0(6), and we have rf2 = T 2r. Further, a interchanges
the image of r with its complement in Z. Therefore if the Collatz conjecture holds, then
the group GT acts transitively on N0. It remains to show the other direction. Put

s : Z→ Z, n 7→

{
n+2
2 if n ∈ 0(2),

n+1
2 if n ∈ 1(2).

The mapping s is a right inverse of r, and for all integers n we have ns = nas. It suffices
to check that for all n ∈ N0 we have {nbs, ncs} ⊆ {ns, nsT } ∪ T−1(ns). Indeed we have

• nbs = ns if n ∈ 0(4),
• nbs = nsT if n ∈ 2(4),
• nbsT = ns if n ∈ 1(2),
• ncs = ns if n ∈ 3(4) ∪ 0(6) ∪ 4(6),
• ncs = nsT if n ∈ 1(4), and
• ncsT = ns if n ∈ 2(6),

which shows that if GT acts transitively on N0, then the Collatz conjecture holds. �

Note however that for some groups generated by three class transpositions it is easy to
find out that they act transitively on N0:

Remark 2.3. With the GAP [2] package RCWA [6], using Method 10.4 in [4] one can
check that the group G5 := 〈τ0(2),1(2), τ1(2),2(4), τ0(3),2(3)〉 acts at least 5-transitively
on N0. The group G5 can be obtained from GT by replacing the generator τ1(4),2(6) by
τ0(3),2(3). The important difference between G5 and GT is as follows: while there is a
finite set S of elements of G5 such that for every integer n > 0 there is some g ∈ S such
that ng < n, the group GT does not have a finite subset with this property.

3. THOMPSON’S GROUP V AND FURTHER SUBGROUPS OF CT(Z)

By Theorem 2.3 in [5], the group CT(Z) is not finitely generated. By the arguments
used in the proof of that theorem, it follows also that CTP(Z) is not finitely generated if P
is infinite. However we will see that CTP(Z) is finitely generated if P is finite.

Definition 3.1. Given a positive integer m, let Cm be the set of all class transpositions
which interchange residue classes whose moduli divide m.

Theorem 3.2. Let P be a finite set of primes. Then the group CTP(Z) is finitely generated.
More precisely, CTP(Z) is generated by Cm, where m :=

∏
p∈P p

2 if 2 /∈ P and m :=

2 ·
∏
p∈P p

2 otherwise.

Proof. Let m be as above, and let τ = τr1(m1),r2(m2) ∈ CTP(Z) be a class transposition.
We need to show that τ can be written as a product of elements of Cm.

Let p ∈ P, and let k1 and k2 be the exponents of the highest powers of p which divide
m1 or m2, respectively. Without loss of generality, we can assume k2 > k1 and k2 > 2.

We put m3 := gcd(m,m2) and m4 := m3/p. Since r1(m1) and r2(m2) are disjoint
residue classes andm4 > 3, we can choose a residue class r4(m4) which intersects trivially
with the support of τ . Putting σ := τr2(m3),r4(m4) ∈ Cm, we have τσ = τr1(m1),r4(m2/p).
Now we can conclude by induction on ki, i = 1, 2, carried out for all primes p ∈ P, that
there is a product π of elements of Cm such that τπ ∈ Cm. The assertion follows. �

Small generating sets for the groups CT{2}(Z) ∼= G2,1 and CT{3}(Z) are immediate,
and from Theorem 3.2, by means of computation with the GAP [2] package RCWA [6]
we can also derive one for CT{2,3}(Z):
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Proposition 3.3. We have

CT{2}(Z) = 〈τ0(2),1(2), τ1(2),2(4), τ0(2),1(4), τ1(4),2(4)〉,
CT{3}(Z) = 〈τ0(3),1(3), τ1(3),2(3), τ2(9),3(9), τ5(9),6(9), τ2(3),3(9)〉,

CT{2,3}(Z) = 〈τ0(2),1(2), τ0(3),1(3), τ1(3),2(3), τ0(2),1(4), τ0(2),5(6), τ0(3),1(6)〉.

The generators for CT{2}(Z) given in Proposition 3.3 correspond directly to Higman’s
generators for G2,1:

Remark 3.4. As one can check by straightforward calculation, the generators κ := τ0(2),1(2),
λ := τ1(2),2(4), µ := τ0(2),1(4) and ν := τ1(4),2(4) for CT{2}(Z) given in Proposition 3.3
satisfy the following defining relations of the group G2,1 given in Higman [3], p. 50.:

(1) κ2 = λ2 = µ2 = ν2 = 1,
(2) λκµκλνκνµκλκµ = 1,
(3) κνλκµνκλνµνλνµ = 1,
(4) (λκµκλν)3 = (µκλκµν)3 = 1,
(5) (λνµ)2κ(µνλ)2κ = 1,
(6) (λνµν)5 = 1,
(7) (λκνκλν)3κνκ(µκνκµν)3κνκν = 1,
(8) ((λκµν)2(µκλν)2)3 = 1,
(9) (λνλκµκµνλνµκµκ)4 = 1,

(10) (µνµκλκλνµνλκλκ)4 = 1,
(11) (λµκλκµλκνκ)2 = 1, and
(12) (µλκµκλµκνκ)2 = 1

Since G2,1 is simple, it follows that CT{2}(Z) ∼= G2,1. Another presentation for this
group can be found on Page 242 in [1]. The generators A, B, C and π0 used there can be
related to κ, λ, µ and ν via A = λκµ, B = µνλκ, C = µκλκ and π0 = µ, respectively,
κ = AC, λ = ACπ0A

−1, µ = π0 and ν = Aπ0B
−1π0. The group CT{2}(Z) can be

visualized as shown in Figure 1.

Z

0(2) 1(2)

0(4) 2(4) 1(4) 3(4)

0(8)       4(8)         2(8)       6(8)   1(8)       5(8)          3(8)       7(8)

λ
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μ

ν

... ...

...

...

...

...

...

...

FIGURE 1. The arrows point to the roots of the subtrees interchanged
by the generators.
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