
ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS

STEFAN KOHL

ABSTRACT. Motivated by the famous 3n + 1 conjecture, we call a mapping from Z to Z
residue-class-wise affine if there is a positive integer m such that it is affine on residue
classes (mod m). This article describes a collection of algorithms and methods for compu-
tation in permutation groups and monoids formed by residue-class-wise affine mappings.

1. INTRODUCTION

The famous 3n + 1 conjecture by Lothar Collatz asserts that iterated application of the
mapping

T : Z → Z, n 7→

{
n/2 if n is even,

(3n + 1)/2 if n is odd
to a positive integer yields 1 after a finite number of steps. The question whether this holds
is still open today. See [11] for a comprehensive annotated bibliography.

Motivated by the Collatz conjecture, we make the following general definition:

Definition 1.1. We call a mapping f : Z→ Z residue-class-wise affine or in short an rcwa
mapping, if there is a positive integer m such that the restrictions of f to the residue classes
r(m) ∈ Z/mZ are all affine, i.e. given by

f |r(m) : r(m)→ Z, n 7→
ar(m) · n + br(m)

cr(m)

for certain coefficients ar(m), br(m), cr(m) ∈ Z depending on r(m). We call the smallest
possible m the modulus of f , written Mod(f).

In general, a mapping from Z to Z cannot be described by a finite amount of data. The
rcwa mappings form a class of such mappings which can. It is easy to see that they form a
monoid under composition.

The following observations are immediate:

Remark 1.2. Any coefficient cr(m) must divide both ar(m) · r + br(m) and m. Furthermore
we have

1
m
·

∑
r(m)∈Z/mZ

cr(m)

ar(m)


6 1 if f is injective,
> 1 if f is surjective, and
= 1 if f is bijective.

Obviously, the Collatz mapping T is an rcwa mapping, and we have Mod(T) = 2. It
is easy to check that the mapping T is surjective, but not injective – the preimage of an
integer n under T is {2n, (2n − 1)/3} if n ≡ 2 mod 3, and {2n} otherwise. For the
mapping T , the expression in Remark 1.2 takes the value 1/2 · (2/1 + 2/3) = 4/3 > 1.

2000 Mathematics Subject Classification. 20B40.
Key words and phrases. computational group theory, infinite permutation group, residue-class-wise affine

group, 3n+1 conjecture, Collatz conjecture, GAP system.
1

2 STEFAN KOHL

A specific example of a bijective rcwa mapping, an rcwa permutation, is

α : Z −→ Z, n 7−→


2n/3 if n ≡ 0 (mod 3),
(4n− 1)/3 if n ≡ 1 (mod 3),
(4n + 1)/3 if n ≡ 2 (mod 3).

This permutation has already been investigated by Lothar Collatz in 1932, but its cycle
structure is still unknown (cf. Keller [5], Wirsching [12]).

A simpler example of an rcwa permutation is τ : n 7→ n + (−1)n. This mapping
interchanges the residue classes 0(2) = 2Z and 1(2) = 1+2Z setwise. A natural generali-
zation of this to arbitrary pairs of disjoint residue classes is the following (remember that
by the Chinese Remainder Theorem, two residue classes r1(m1) and r2(m2) are disjoint
if and only if r1 and r2 are incongruent modulo the gcd of m1 and m2):

Definition 1.3. Given disjoint residue classes r1(m1) and r2(m2) of Z, we define the class
transposition τr1(m1),r2(m2) as the involution which interchanges r1 + km1 and r2 + km2

for each integer k and which fixes all other points. Here we assume that 0 6 r1 < m1 and
that 0 6 r2 < m2.

This article mainly describes algorithms for computation in groups whose elements are
rcwa permutations:

Definition 1.4. We denote the group which is formed by all residue-class-wise affine per-
mutations of Z by RCWA(Z). We call its subgroups residue-class-wise affine groups, or
in short rcwa groups.

The set of all class transpositions of Z generates a subgroup of RCWA(Z) which we
denote by CT(Z). In [8] it is shown that this group is simple, and that its class of subgroups
includes

- the free groups of finite rank,
- all free products of finitely many finite groups,
- certain divisible torsion groups, and
- uncountably many distinct simple groups.

There are finitely generated subgroups of CT(Z) which do not have finite presentations,
and there are also finitely generated subgroups of CT(Z) for which the membership prob-
lem is algorithmically unsolvable (cf. [8], Corollary 4.5). Nevertheless we will see that
there are quite practical methods to compute in rcwa groups.

This article describes algorithms and methods for the following tasks:
- Basic tasks:

– Performing arithmetical operations with rcwa mappings and rcwa permuta-
tions, such as multiplying and computing inverses.

– Performing set-theoretic operations with residue classes, such as computing
unions, intersections and differences.

– Computing images and preimages of set-theoretic unions of residue classes
of Z under rcwa mappings.

- Group constructions:
– Constructing finite direct products of rcwa groups.
– Constructing wreath products of rcwa groups with finite groups, and restricted

wreath products of rcwa groups with the infinite cyclic group (Z,+).
– Constructing an rcwa group which is isomorphic to the free product of given

finite groups.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 3

– Constructing an rcwa group isomorphic to the free group of a given rank.
- Computing in rcwa groups:

– Computing the order of an rcwa permutation and the order of an rcwa group.
– Solving the membership problem in ‘many’ cases.
– Factoring an element of an rcwa group into a product of the given generators.
– Determining whether an rcwa group acts transitively on Z or on a given set-

theoretic union of residue classes, and determining the degree of transitivity.
– Looking for an element of a given rcwa group which maps a given tuple of

pairwise distinct integers to another given tuple.
– Extracting roots of suitable rcwa permutations of finite order.

All of these algorithms and methods are sufficiently practical to be used in solving nontriv-
ial problems.

Illustrative examples are given. The purpose of most of the examples is more to show
how the algorithms work than to demonstrate what is computationally feasible. None of
them is time- or memory-critical, i.e. none of them needs more than a few seconds on a
standard PC, and they do not exhaust the memory of even a rather old machine.

Sometimes rough estimates of the computational complexity are given. However for
most of the more advanced methods, an analysis of the runtime and memory requirements
would be delicate. The reason for this is that there are often both very easy and extremely
difficult cases which one sometimes cannot easily distinguish a priori. For example, as
stated above, the membership problem for rcwa groups is in general algorithmically un-
solvable – but it can be solved quickly in many common situations.

In this article, the term ‘algorithm’ means that termination is guaranteed, while the term
‘method’ means that termination is not guaranteed. A method may run into an infinite loop
or otherwise be unable to produce a result for given arguments. However, if a result is
returned then it is correct, unless the descriptor given in brackets after the method number
states explicitly that the method returns only a ‘guess’.

The algorithms and methods are grouped together in sections, depending on their pur-
pose. To avoid forward references, the ordering of the sections follows mainly the depen-
dencies between the algorithms and methods.

All of the algorithms and methods described in this article are implemented in the au-
thor’s package RCWA [9] for the computer algebra system GAP [3]. Further examples of
their use can be found in the manual of this package.

2. BASIC ARITHMETIC

The purpose of this section is to describe how to represent rcwa mappings and rcwa
groups in memory, how to check whether a given rcwa mapping is injective, surjective
or bijective, and how to perform basic arithmetic operations with such mappings such as
multiplying and computing inverses.

Definition 2.1 (Internal Representation of rcwa Mappings). Let f be an rcwa mapping,
and let m denote its modulus. Assume that the restriction of f to a residue class r(m) is
given by n 7→ (ar(m) · n + br(m))/cr(m). We store f as a reduced coefficient list, i.e. as a
list of m triples (ar(m), br(m), cr(m)) of coprime integers, where all cr(m) are positive.

For example, the coefficient list ((1, 0, 2), (3, 1, 2)) is used to represent the Collatz map-
ping T , and the class transposition τ = τ0(2),1(2) is represented by the coefficient list
((1, 1, 1), (1,−1, 1)).

4 STEFAN KOHL

Two rcwa mappings are equal if and only if the corresponding coefficient lists are equal.
Therefore testing for equality is cheap. In order to obtain the normal form described in
Definition 2.1, we need a reduction algorithm:

Algorithm 2.2 (Reduction of Coefficient Lists). Let m be a positive integer. Further let
(ar(m), br(m), cr(m))r(m)∈Z/mZ be a coefficient list which describes an rcwa mapping and
which is possibly not yet in reduced form. This means that the entries of the coefficient
triples may be not yet coprime, that the coefficients cr(m) are possibly negative and that m
may be any multiple of the actual modulus. We reduce this coefficient list as follows:

(1) For all r(m) ∈ Z/mZ, do the following:
(a) Put d := gcd(ar(m), br(m), cr(m)), and divide ar(m), br(m) and cr(m) by d.
(b) If cr(m) <0, then put ar(m) :=−ar(m), br(m) :=−br(m) and cr(m) :=−cr(m).

(2) Let p1, . . . , pl be the prime divisors of m, and put k := 1.
(3) Check if ∀(i, j) ∈ {1, . . . , pk − 1} × {0, . . . ,m/pk − 1} aj(m) = ai·m/pk+j(m)

∧ bj(m) = bi·m/pk+j(m) ∧ cj(m) = ci·m/pk+j(m). If so, then put m := m/pk.
Otherwise put k := k + 1.

(4) If k > l, then go to Step (6).
(5) If pk - m, then put k := k + 1.
(6) If k 6 l, then go to Step (3). Otherwise return the rcwa mapping with modulus m

and coefficients ar(m), br(m) and cr(m), for r running from 0 to m− 1.

In Step (2)-(6), the actual modulus of the mapping is determined by looking for the
shortest period of the coefficient list.

The memory requirements of Algorithm 2.2 are linear in the input length, and the run-
time requirements are slightly more than linear in the input length.

Example 2.3. Assume that we start with the coefficient list l = ((−1, 0,−2), (30, 10, 20),
(4, 0, 8), (−9,−1,−6)). Then after Step (1.a) we have l = ((−1, 0,−2), (3, 1, 2), (1, 0, 2),
(−3,−1,−2)), and after Step (1.b) we have l = ((1, 0, 2), (3, 1, 2), (1, 0, 2), (3, 1, 2)).

The list l has length m = 4, and the only prime divisor of 4 is p1 = 2. In Step (3)
we find that dividing our list l into 2 parts of the same length yields two equal lists
((1, 0, 2), (3, 1, 2)). Thus we put l := ((1, 0, 2), (3, 1, 2)).

The length of l is still divisible by 2, therefore we repeat Step (3). However splitting
our list into two parts yields two unequal lists ((1, 0, 2)) and ((3, 1, 2)) of length 1, thus no
further reduction is possible.

There are no further prime divisors p2, p3, . . ., hence we are finished and the result is
the rcwa mapping with coefficients ((1, 0, 2), (3, 1, 2)) (which happens to be the Collatz
mapping).

We need a few basic terms describing the coefficients of an rcwa mapping:

Definition 2.4. Let f be an rcwa mapping, and assume that f is described by the reduced
coefficient list (ar(m), br(m), cr(m))r(m)∈Z/mZ. We define the multiplier Mult(f) of f by
lcmr(m)∈Z/mZ ar(m), and the divisor Div(f) of f by lcmr(m)∈Z/mZ cr(m). We call f
integral if Div(f) = 1. We call f class-wise order-preserving if all ar(m) are positive.

For example, the Collatz mapping T has multiplier 3 and divisor 2, and it is class-
wise order-preserving. The mappings n 7→ n + 1 and n 7→ −n are both integral, but
only the first of them is class-wise order-preserving. The multiplier and the divisor of
a class transposition τr1(m1),r2(m2) are both equal to lcm(m1,m2)/ gcd(m1,m2). Class
transpositions are therefore integral if and only if the moduli of the transposed residue
classes are the same. They are always class-wise order-preserving.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 5

The following assertion on multipliers and divisors of rcwa mappings is immediate:

Lemma 2.5. The multiplier respectively divisor of a product of rcwa mappings divides the
product of the multipliers respectively divisors of the factors. The inversion of an rcwa
permutation interchanges multiplier and divisor.

The class-wise order-preserving elements of RCWA(Z) form a subgroup:

Definition 2.6. Let RCWA+(Z) < RCWA(Z) denote the subgroup which consists of all
class-wise order-preserving elements.

The following lemma is needed for multiplying rcwa mappings:

Lemma 2.7. Let f and g be rcwa mappings. Then the following hold:
(1) Mod(f · g)| lcm(Mod(f),Div(f) ·Mod(g)).
(2) Mod(f · g)|Mod(f) ·Mod(g).

Proof. Let n ∈ Z. By definition, n mod Mod(f) determines the affine partial mapping of f
which is applied to n. The image of n under this mapping is determined (mod Mod(g))
by n mod (Div(f) · Mod(g)). This yields Assertion (1). Assertion (2) follows from
Assertion (1), since Div(f)|Mod(f) (cf. Remark 1.2). �

Algorithm 2.8 (Multiplication of rcwa Mappings). Let f and g be rcwa mappings. Fur-
ther let mf and mg denote the moduli of f and g, respectively. Assume that f and g
are represented by the reduced coefficient lists (af,r(mf), bf,r(mf), cf,r(mf))r(mf)∈Z/mf Z
and (ag,r(mg), bg,r(mg), cg,r(mg))r(mg)∈Z/mgZ, respectively. We compute the product of f
and g as follows:

(1) Put mfg := gcd(mf ·mg, lcm(mf ,Div(f) ·mg)).
(2) For r = 0, . . . ,mfg − 1, put

- afg,r(mfg) := af,r(mf) · ag,f(r)(mg),
- bfg,r(mfg) := ag,f(r)(mg) · bf,r(mf) + bg,f(r)(mg) · cf,r(mf), and
- cfg,r(mfg) := cf,r(mf) · cg,f(r)(mg).

(3) Apply Algorithm 2.2 to the coefficient list

(afg,r(mfg), bfg,r(mfg), cfg,r(mfg))r(mfg)∈Z/mfgZ,

and return the result.

In Step (1) of Algorithm 2.8, a multiplicative upper bound for the modulus is chosen.
The choice is made according to Lemma 2.7. The actual multiplications of the affine partial
mappings are performed in Step (2). In the last step the modulus of the result is determined,
and the coefficient list is brought into normal form.

The memory requirements of Algorithm 2.8 are linear in the multiple mfg of the modu-
lus of the product computed in Step (1), and the runtime is slightly more than linear in mfg .

Example 2.9. Assume that we want to compute the square T 2 of the Collatz mapping.
Then, Step (1) yields mfg := gcd(2 · 2, lcm(2, 2 · 2)) = 4. The coefficient lists of both
factors are equal to ((1, 0, 2), (3, 1, 2)). In Step (2), we compute from this the coefficient
list

l := ((1 · 1, 1 · 0 + 0 · 2, 2 · 2), (3 · 1, 1 · 1 + 0 · 2, 2 · 2),

(1 · 3, 1 · 0 + 1 · 2, 2 · 2), (3 · 3, 3 · 1 + 1 · 2, 2 · 2))

= ((1, 0, 4), (3, 1, 4), (3, 2, 4), (9, 5, 4)).

6 STEFAN KOHL

Step (3) does not yield any reduction in this example, thus the result is the rcwa mapping

T 2 : Z → Z, n 7→


n/4 if n ∈ 0(4),
(3n + 1)/4 if n ∈ 1(4),
(3n + 2)/4 if n ∈ 2(4),
(9n + 5)/4 if n ∈ 3(4)

with coefficient list l.

We describe an algorithm to check whether a given rcwa mapping is injective or surjec-
tive, respectively:

Algorithm 2.10 (Test for Injectivity / Surjectivity). Let f be an rcwa mapping, and let
m denote its modulus. Assume that the mapping f is represented by the reduced coeffi-
cient list (ar(m), br(m), cr(m))r(m)∈Z/mZ. Since the two algorithms to check whether f is
injective respectively surjective are very similar, we describe them together:

(1) If we check for injectivity, then start with the following checks:
(a) If Mult(f) = 0, then return false.
(b) Otherwise choose some bound b ∈ N and check whether the image of the set
{−b,−b + 1, . . . , b} under f has cardinality 2b + 1. If not, then return false.

(2) Put m̂ := m ·Mult(f)/ gcdr(m)∈Z/mZ cr(m), and set up a list l = (l0, . . . , lm̂−1)
of m̂ zeros.

(3) For all r = 0, . . . ,m− 1 such that ar(m) 6= 0, do the following:
(a) Put m̃ := m · ar(m)/cr(m) and r̃ := (ar(m) · r + br(m))/cr(m) mod m̃.
(b) For r̂ ∈ {r̃, r̃ + m̃, . . . , r̃ + (m̂/m̃ − 1) · m̃ + r̃}, do the following: If we

check for injectivity and it is lr̂ = 1, then return false. Otherwise put lr̂ := 1.
(4) If we check for injectivity, then return true. If we check for surjectivity, then return

true if l0 = l1 = · · · = lm̂−1 = 1, and false otherwise.

Algorithm 2.10 basically computes the images of the residue classes (mod m) under f ,
and checks whether they overlap (test for injectivity) or, respectively, whether they en-
tirely cover Z (test for surjectivity). The memory requirements are linear in the value m̂
computed in Step (2), and the runtime requirements are less than linear in m · m̂.

Example 2.11. Assume that we would like to check whether the Collatz mapping T is
injective. We have Mult(T) = 3 6= 0, thus T can still be injective. Now choose, say,
b := 2 and compute T ({−2,−1, 0, 1, 2}) = {−1, 0, 1, 2}. This disproves injectivity.

Now assume that we would like to check whether T is surjective. In Step (2) we put
m̂ := (2·3)/ gcd(2, 2) = 3, and set up a list l := (0, 0, 0). In Step (3), we do the following:

- For r = 0, we put m̃ := (2 · 1)/2 = 1 and r̃ := (1 · 0 + 0)/2 mod m̃ = 0. Then
for r̂ ∈ {0, 1, 2}, we put lr̂ := 1.

- For r = 1, we put m̃ := (2 · 3)/2 = 3 and r̃ := (3 · 1 + 1)/2 mod m̃ = 2. Then
for r̂ ∈ {2}, we put lr̂ := 1.

In Step (4) we check whether l = (1, 1, 1). Since this is the case, T is surjective.
What we have done is basically to compute T (0(2)) = Z and T (1(2)) = 2(3), and to

check whether the two images together cover all residue classes (mod 3).

The following lemma is needed for computing inverses of rcwa permutations:

Lemma 2.12. Let σ be an rcwa permutation, and let m denote its modulus. Assume that
σ is described by the reduced coefficient list (ar(m), br(m), cr(m))r(m)∈Z/mZ. Then the
modulus of the inverse of σ divides m ·Mult(σ)/ gcdr(m)∈Z/mZ cr(m).

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 7

Proof. Clearly, the modulus of σ−1 divides the least common multiple of the moduli of
the images of the residue classes r(m) ∈ Z/mZ under σ. The assertion follows from this,
since the image of a residue class r(m) under the corresponding affine partial mapping
f |r(m) : n 7→ (ar(m) · n + br(m))/cr(m) is a residue class (mod m · ar(m)/cr(m)). �

Algorithm 2.13 (Inversion of rcwa Permutations). Let σ be an rcwa permutation, and
let mσ denote its modulus. Assume that σ is represented by the reduced coefficient list
(aσ,r(mσ), bσ,r(mσ), cσ,r(mσ))r(mσ)∈Z/mσZ. We compute the inverse of σ as follows:

(1) Put mσ−1 := mσ ·Mult(σ)/ gcdr(mσ)∈Z/mσZ cr(mσ).
(2) For r = 0, . . . ,mσ − 1, do the following:

(a) Put a := cσ,r(mσ), b := −bσ,r(mσ) and c := aσ,r(mσ).
(b) Put m̃ := mσ · aσ,r(mσ)/cσ,r(mσ).
(c) Put r̃ := (aσ,r(mσ) · r + bσ,r(mσ))/cσ,r(mσ) mod m̃.
(d) For r̂ = r̃, r̃+m̃, r̃+2m̃, . . . , r̃+(mσ−1/m̃−1) ·m̃, put aσ−1,r̂(mσ−1) := a,

bσ−1,r̂(mσ−1) := b, and cσ−1,r̂(mσ−1) := c.
(3) Apply Algorithm 2.2 to the coefficient list

(aσ−1,r̂(mσ−1), bσ−1,r̂(mσ−1), cσ−1,r̂(mσ−1))r̂(mσ−1)∈Z/mσ−1Z,

and return the result.

The memory requirements of Algorithm 2.13 are linear in the value mσ−1 computed in
Step (1), and the runtime requirements are slightly more than linear in mσ−1 .

Example 2.14. We invert the Collatz permutation

α ∈ RCWA(Z) : n 7−→


2n/3 if n ∈ 0(3),
(4n− 1)/3 if n ∈ 1(3),
(4n + 1)/3 if n ∈ 2(3),

which is represented by the coefficient list ((2, 0, 3), (4,−1, 3), (4, 1, 3)). In Step (1),
mσ−1 is initialized with (3 · 4)/ gcd(3, 3, 3) = 4. In Step (2), we do the following:

- For r = 0, we put a := 3, b := 0 and c := 2. Then we put m̃ := (3 · 2)/3 = 2
and r̃ := (2 · 0 + 0)/3 = 0. Finally we put aσ−1,0(4) := a, aσ−1,2(4) := a,
bσ−1,0(4) := b, bσ−1,2(4) := b, cσ−1,0(4) := c and cσ−1,2(4) := c.

- For r = 1, we put a := 3, b := 1 and c := 4. Then we put m̃ := (3 · 4)/3 = 4
and r̃ := (4 · 1 − 1)/3 = 1. Finally we put aσ−1,1(4) := a, bσ−1,1(4) := b and
cσ−1,1(4) := c.

- For r = 2, we put a := 3, b := −1 and c := 4. Then we put m̃ := (3 · 4)/3 = 4
and r̃ := (4 · 2 + 1)/3 = 3. Finally we put aσ−1,3(4) := a, bσ−1,3(4) := b and
cσ−1,3(4) := c.

This yields the coefficient list ((3, 0, 2), (3, 1, 4), (3, 0, 2), (3,−1, 4)). In this example,
Step (3) does not yield any further reduction, hence we obtain

α−1 ∈ RCWA(Z) : n 7−→


3n/2 if n ∈ 0(2),
(3n + 1)/4 if n ∈ 1(4),
(3n− 1)/4 if n ∈ 3(4).

We fix a representation of rcwa groups in memory:

Definition 2.15 (Internal Representation of rcwa Groups). We store a finitely generated
rcwa group as a list of generating rcwa permutations.

8 STEFAN KOHL

3. SET-THEORETIC UNIONS OF RESIDUE CLASSES

Since set-theoretic unions of residue classes are objects which are commonly needed in
computations with rcwa groups, we describe how to compute with them. The algorithms
may look more or less straightforward, but since they are crucial for computation in rcwa
groups, the author thinks that they are still worth being described.

Obviously, any union of finitely many residue classes of Z can be written as a union of
residue classes modulo a common modulus.

Definition 3.1. Let S ⊆ Z be a union of finitely many residue classes. We define the
modulus Mod(S) of S by the least positive integer m such that S can be written as a union
of residue classes (mod m).

We need to implement algorithms for computing with elements of the closure of the
class of unions of finitely many residue classes of Z with respect to addition and subtraction
of finite sets of integers. This class of sets is closed under taking images and preimages
under rcwa mappings. We represent these sets in memory in a straightforward way:

Definition 3.2 (Internal Representation of Residue Class Unions). Let Src ⊆ Z be a union
of finitely many residue classes, and let Sexc and Sinc be finite subsets of Src and the
complement of Src in Z, respectively. Let m denote the modulus of Src, and assume that
Src = r1(m) ∪ · · · ∪ rl(m).

We represent the set S := (Src ∪ Sinc) \ Sexc in memory as a record which contains
the modulus m, the set R = {r1, . . . , rl} of residues and the sets Sinc and Sexc of included
and excluded elements.

In order to simplify notation, we also call m the modulus of S. If S degenerates to a
finite set, then for consistency we set the modulus equal to 0.

To distinguish them from unions of residue classes without attached sets of ‘included’
and ‘excluded’ integers, we use for sets like S the technical term residue class union.

The chosen representation certainly has the drawback that it is sometimes not the most
economic one in terms of memory requirements, but it has the important feature that it is
unique and that it therefore allows quick comparisons.

The membership test for such residue class unions is cheap as well: A given integer lies
in a given residue class union if and only if it does not lie in the stored set of excluded
integers, but it does lie either in the stored set of included integers, or its residue modulo
the stored modulus lies in the stored list of residues.

Another very basic task is to compute unions, intersections and differences:

Algorithm 3.3 (Union, Intersection and Difference of Residue Class Unions). Let
S1 = (S1,rc ∪ S1,inc) \ S1,exc and S2 = (S2,rc ∪ S2,inc) \ S2,exc be residue class unions
in the sense of Definition 3.2. Further let m1 and m2 denote the moduli of S1,rc and S2,rc,
respectively, and let R1 and R2 denote the corresponding sets of residues. We compute the
set-theoretic union, intersection and difference of S1 and S2 as follows:

(1) Put m := lcm(m1,m2).
(2) This step depends on whether we want to compute the union, the intersection or

the difference of S1 and S2. Either put
- R := {0 6 r < m | r modm1 ∈ R1 ∨ r modm2 ∈ R2} (union),
- R := {0 6 r < m | r modm1 ∈ R1 ∧ r modm2 ∈ R2} (intersection), or
- R := {0 6 r < m | r modm1 ∈ R1 ∧ r modm2 /∈ R2} (difference).

(3) Let p1, . . . , pl be the prime divisors of m, and put k := 1.
(4) Put m̃ := m/pk and R̃ := {r mod m̃ | r ∈ R}.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 9

(5) If |R̃| = |R|/pk, then put m := m̃ and R := R̃. Otherwise put k := k + 1.
(6) If pk - m, then put k := k + 1.
(7) If k 6 l, then go to Step (4).
(8) This step depends again on whether we want to compute the union, the intersection

or the difference of S1 and S2.
- For the union, proceed as follows:

(a) Put Sinc := S1,inc ∪ S2,inc, and remove all integers n from Sinc for
which n modm ∈ R.

(b) Put Sexc := ∪2
i=1{n ∈ Si,exc | n modm3−i /∈ R3−i}, and remove all

integers n from Sexc for which n modm /∈ R.
- For the intersection, proceed as follows:

(a) Put Sinc := (∪2
i=1{n∈Si,inc | n modm3−i∈R3−i})∪(S1,inc∩S2,inc),

and remove all n from Sinc for which n modm ∈ R.
(b) Put Sexc := S1,exc ∪ S2,exc, and remove all integers n from Sexc for

which n modm /∈ R.
- For the difference, proceed as follows:

(a) Put Sinc := {n ∈ S1,inc | n modm2 /∈R2}∪{n ∈ S2,exc | n modm1∈
R1}, and remove all integers n from Sinc for which n modm ∈ R.

(b) Put Sexc := S1,exc ∪ S2,inc, and remove all integers n from Sexc for
which n modm /∈ R.

(9) Return the residue class union with the modulus m, the set of residues R and the
finite sets Sinc and Sexc of included and excluded integers.

The actual computation of the union, intersection or difference of the unions of residue
classes takes place in Step (1)-(2) of Algorithm 3.3, while the purpose of Step (3)-(7) is
the determination of the modulus of the result. The finite sets of included and excluded
integers are dealt with in Step (8).

The runtime and memory requirements of Algorithm 3.3 are both at most linear in the
lcm of the moduli of the arguments. If the lists of residues of the arguments are sparse, then
the runtime and memory requirements are lower provided that Step (2) is implemented in
a suitable way (e.g. for the intersection, in this case it is worthwhile using the Chinese
Remainder Theorem, etc.). Here and in the following, for simplicity we disregard the time
needed to process the finite sets Sinc and Sexc.

We give an algorithm to check whether one residue class union is a subset of another:

Algorithm 3.4 (Checking for a Subset Relation between Residue Class Unions). Let
S1 = (S1,rc ∪ S1,inc) \ S1,exc and S2 = (S2,rc ∪ S2,inc) \ S2,exc be residue class unions
in the sense of Definition 3.2. Further let m1 and m2 denote the moduli of S1,rc and S2,rc,
respectively, and let R1 and R2 denote the corresponding sets of residues. To determine
whether S2 is a subset of S1, we proceed as follows:

(1) Put m := lcm(m1,m2).
(2) If not all integers in S2,inc lie in S1 as well, then return false.
(3) If some integer in S1,exc lies in S2 as well, then return false.
(4) For i = 1, 2, put R̃i := {0 6 r < m | r modmi ∈ Ri}.
(5) If R̃2 is a subset of R̃1, then return true, otherwise return false.

Sometimes we will add a constant to the elements of a residue class union, or we will
multiply or divide them by some constant. These arithmetic operations are then applied
elementwise to the stored set of residues and to the finite sets of included and excluded
elements. For example we have (1(4)∪{4, 8})\{−3, 9}+2 = (3(4)∪{6, 10})\{−1, 11}

10 STEFAN KOHL

and 3 · (0(4) ∪ 1(4)) = 0(12) ∪ 3(12). Adding a constant leaves the modulus unchanged,
while multiplications and divisions are applied to the modulus as well. Of course, dividing
a residue class union by a constant is possible only if all of its elements are divisible by
that constant. Multiplying a residue class union by 0 yields the set {0}.

A common task is to refine a partition of a residue class union into residue classes to
some prescribed length:

Algorithm 3.5 (Refine a Partition into Residue Classes to Prescribed Length). Let S ⊆ Z
be a nonempty union of finitely many residue classes, let P be a partition of S into residue
classes, and let l > |P| be a positive integer. We refine P to a partition of length l as
follows:

(1) Let r(m) be a residue class in P with smallest modulus.
(2) Replace r(m) by the two residue classes r(2m) and r + m(2m).
(3) If |P| < l then go to Step (1).
(4) Return P .

Often it is helpful to write a union of residue classes as a disjoint union of a ‘small’
number of residue classes. For example, the set 1(12) ∪ 2(12) ∪ 3(12) ∪ 4(12) ∪ 5(12) ∪
6(12)∪7(12)∪9(12)∪10(12)∪11(12) has the partition {1(2), 2(4), 4(12)}. The following
algorithm is reasonably fast and usually produces partitions of either minimal or close-to-
minimal length:

Algorithm 3.6 (Short Partitions of Unions of Residue Classes). Let S ⊆ Z be a union of
finitely many residue classes, let m denote its modulus and let R = {r1, . . . , rl} denote
the corresponding set of residues. We determine a partition of S into ‘few’ residue classes
as follows:

(1) If |R| = 1, then return {r1(m)}.
(2) Let d1, . . . , dτ(m) be the divisors of m, sorted in ascending order, and put P := ∅.
(3) For d = d1, . . . , dτ(m), do the following:

(a) If d - m or |R| < m/d, then proceed immediately to the next divisor d.
(b) For r ∈ {r̃ mod d | r̃ ∈ R}, do the following:

(i) Check whether {r, r + d, . . . , r + (m/d − 1) · d} ⊆ R. If not, then
proceed immediately to the next residue r.

(ii) Put P := P ∪ {r(d)} and S := S \ r(d).
(iii) Put m := Mod(S), and let R be the set of residues of S.
(iv) If d - m or |R| < m/d, then break the inner loop and proceed immedi-

ately to the next divisor d.
(c) If S = ∅, then break the loop and go to Step (4).

(4) Return P .

The memory requirements of Algorithm 3.6 are linear in m, and the runtime require-
ments are between linear and quadratic in m.

Example 3.7. Let S be the union of the residue classes r(60) for r ∈ R, where

R = {0, 1, 3, 4, 5, 7, 8, 12, 13, 16, 17, 19, 20, 24, 25, 28, 29,

31, 32, 33, 36, 37, 40, 41, 43, 44, 48, 49, 52, 53, 55, 56}.
We decompose the set S into few disjoint residue classes as follows:

- We determine the divisors of 60 – these are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 and
60 – and initialize P by ∅.

- d = 1: We observe that |R| = 32 < 60/1, thus proceed to the next d.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 11

- d = 2: We observe that neither {0, 2, 4, 6, 8, . . . , 58} nor {1, 3, 5, 7, 9, . . . , 59} are
subsets of R, thus proceed to the next d.

- d = 3: We observe that neither {0, 3, . . . , 57} nor {1, 4, . . . , 58} or {2, 5, . . . , 59}
are subsets of R, thus proceed to the next d.

- d = 4: We observe that {0, 4, . . . , 56} ⊂ R, put P := P ∪ {0(4)} and S :=
S \ 0(4), and let R := {1, 3, 5, 7, 13, 17, 19, 25, 29, 31, 33, 37, 41, 43, 49, 53, 55}
be the set of residues of S.

- d = 6: We observe that {1, 7, . . . , 55} ⊂ R, put P := P ∪ {1(6)} and S :=
S \ 1(6), and let R := {3, 5, 17, 29, 33, 41, 53} be the set of residues of S.

- d = 10: We observe that none of the sets {r, r + 10, . . . , r + 50}, r = 0, . . . , 9 is
a subset of R, thus proceed to the next d.

- d = 12: We observe that {5, 17, 29, 41, 53} ⊂ R, put P := P ∪ {5(12)} and
S := S \ 5(12), and let R := {3, 33} be the set of residues of S.

- d = 15: We observe that |R| = 2 < 60/15, thus proceed to the next d.
- d = 20: We observe that |R| = 2 < 60/20, thus proceed to the next d.
- d = 30: We observe that {3, 33} ⊂ R, and put P := P ∪ {3(30)} as well as

S := S \ 3(30) = ∅.
- We have P = {0(4), 1(6), 5(12), 3(30)}, thus S = 0(4) ∪ 1(6) ∪ 5(12) ∪ 3(30).

4. COMPUTING IMAGES AND PREIMAGES

In this section, we describe how to compute images and preimages of residue class
unions under rcwa mappings, how to compute the support (i.e. the set of moved points) of
an rcwa permutation and how to compute the restriction of an rcwa permutation to a union
of residue classes. We also describe how to determine an element of CT(Z) which maps a
given union of residue classes to a given other union of residue classes.

Algorithm 4.1 (Images of Residue Class Unions under rcwa Mappings). Let f be an rcwa
mapping, and let m denote its modulus. Assume that the mapping f is represented by the
reduced coefficient list (ar(m), br(m), cr(m))r(m)∈Z/mZ. Further let S ⊆ Z be a residue
class union, and let m̃ denote its modulus. We compute the image of S under f as follows:

(1) Put S̃ := ∅.
(2) For r = 0, . . . ,m− 1, do the following:

(a) By Algorithm 3.3, compute Sr(m) := S ∩ r(m).
(b) Compute S̃r(m) := f(Sr(m)) = (ar(m) · Sr(m) + br(m))/cr(m).
(c) By Algorithm 3.3, compute S̃ := S̃ ∪ S̃r(m).

(3) Return S̃.

The runtime and memory requirements of Algorithm 4.1 are at most linear in the pro-
duct of the moduli of f and S, but can be considerably lower if the list of residues of S is
reasonably sparse.

Example 4.2. We would like to determine the image of the residue class 0(5) under the
Collatz mapping T : In the notation used in Algorithm 4.1, we have S = 0(5), S0(2) = S ∩
0(2) = 0(10) and S1(2) = S ∩ 1(2) = 5(10). Hence it is T (S0(2)) = 0(10)/2 = 0(5) and
T (S1(2)) = (3 · 5(10)+1)/2 = 8(15), thus T (S) = T (S0(2))∪T (S1(2)) = 0(5)∪ 8(15).

Algorithm 4.3 (Preimages of Integers under rcwa Mappings). Let f be an rcwa mapping,
and let m denote its modulus. Assume that the mapping f is represented by the reduced
coefficient list (ar(m), br(m), cr(m))r(m)∈Z/mZ. We compute the preimage of an integer n
under f as follows:

12 STEFAN KOHL

(1) Put R := ∅ and Sinc := ∅.
(2) For r = 0, . . . ,m− 1, do the following:

(a) If ar(m) = 0, then proceed as follows:
(i) If br(m) = n, then add r to the set R of residues.

(ii) If br(m) 6= n, then proceed to the next r.
(b) If ar(m) 6= 0, then proceed as follows:

(i) Put ñ := (cr(m) · n− br(m))/ar(m).
(ii) If ñ is an integer, and if further ñ modm = r, then add ñ to Sinc.

(3) Remove the elements from Sinc which are congruent (mod m) to one of the
residues in R. Then normalize the residue class union with the modulus m, the
set of residues R and the sets Sinc and ∅ of included and excluded integers as
described in Step (3)-(7) of Algorithm 3.3, and return it.

Algorithm 4.4 (Preimages of Residue Class Unions under rcwa Mappings). Let f be an
rcwa mapping, and let m denote its modulus. Assume that f is represented by the reduced
coefficient list (ar(m), br(m), cr(m))r(m)∈Z/mZ. Further let S = (Src ∪ Sinc) \ Sexc ⊆ Z
be a residue class union, and let m̂ denote its modulus. We compute the preimage of S
under f as follows:

(1) Put m̃ := m · m̂ ·Div(f).
(2) Put R := {0 6 r < m̃ | f(r) ∈ Src}.
(3) Put S̃ := ∪r∈R r(m̃).
(4) By Algorithm 4.3, compute the preimages of the integers in Sinc under f , and add

them to S̃ by Algorithm 3.3.
(5) For n ∈ Sexc, do the following:

(a) By Algorithm 4.3, compute the preimage S̃n,1 of n under f .
(b) By Algorithm 4.1, compute the image Sn of S̃n,1 under f .
(c) By Algorithm 4.3 and Algorithm 3.3, compute the preimage S̃n,2 of the finite

set Sn \ Sexc under f .
(d) By Algorithm 3.3, compute D := S̃n,1 \ S̃n,2.
(e) If D 6= ∅, then put S̃ := S̃ \D. For this, use Algorithm 3.3.

(6) Return S̃.

The runtime and memory requirements of Algorithm 4.4 are linear in the product of the
modulus of f , the divisor of f and the modulus of S.

Example 4.5. We would like to determine the preimage of the residue class 0(5) under
the Collatz mapping T : In Step (1), we compute m̃ := Mod(T) ·Mod(0(5)) · Div(T) =
2 · 5 · 2 = 20. In Step (2), we compute R := {0 6 r < 20 | T (r) ∈ 0(5)} = {0, 3, 10, 13}.
In Step (3), we put S̃ := ∪r∈R r(20) = 0(10) ∪ 3(10). Since Sinc = Sexc = ∅, this is
already our result.

The support of an rcwa permutation can always be represented as a residue class union:

Algorithm 4.6 (Support of an rcwa Permutation). Let σ be an rcwa permutation, and
let m denote its modulus. Assume that the permutation σ is represented by the reduced
coefficient list (ar(m), br(m), cr(m))r(m)∈Z/mZ. We compute the support of σ as follows:

(1) Let S be the union of the residue classes (mod m), for which the coefficient triple
(ar(m), br(m), cr(m)) is not equal to (1, 0, 1).

(2) For r = 0, . . . ,m− 1, do the following:
(a) If ar(m) = cr(m) = 1, then proceed to the next r.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 13

(b) Put n := br(m)/(cr(m) − ar(m)).
(c) If n is an integer, and if further n modm = r, then put S := S \ {n}.

(3) Return S.

Step (2) of Algorithm 4.6 takes care of the fixed points of the affine partial mappings.
The support of an rcwa group is determined by just computing the union of the supports of
its generators. Next we describe how to restrict an rcwa permutation to a union of finitely
many residue classes which it maps to itself:

Algorithm 4.7 (Restricting an rcwa Permutation to a Union of Residue Classes). Let σ
be an rcwa permutation, and let m1 denote its modulus. Assume that the permutation σ
is represented by the reduced coefficient list (ar(m1), br(m1), cr(m1))r(m1)∈Z/m1Z. Further
assume that S is a union of residue classes such that σ(S) = S, and let m2 denote the
modulus of S. We compute the restriction of the permutation σ to the set S as follows:

(1) Put m := lcm(m1,m2).
(2) For r = 0, . . . ,m− 1, do the following:

- If r ∈ S, then put ãr(m) := ar(m1), b̃r(m) := br(m1), and c̃r(m) := cr(m1).
- If r /∈ S, then put ãr(m) := 1, b̃r(m) := 0, and c̃r(m) := 1.

(3) Apply Algorithm 2.2 to the coefficient list (ãr(m), b̃r(m), c̃r(m))r(m)∈Z/mZ, and
return the result.

The runtime and memory requirements of Algorithm 4.6 are both linear in m, and the
ones of Algorithm 4.7 are both approximately linear in lcm(m1,m2).

The groups RCWA(Z) and CT(Z) act transitively on the set of nonempty unions of
finitely many residue classes which are not equal to Z itself. The corresponding algorithms
are as follows:

Algorithm 4.8 (Transitivity of RCWA(Z) on Unions of Residue Classes). Let S1 and S2

be nonempty unions of residue classes of Z. We compute an rcwa permutation σ which
maps S1 to S2 as follows:

(1) By Algorithm 3.6, write the sets S1 and S2 as well as their complements in Z as
unions of ‘few’ residue classes. Let S1,S2, C1 and C2 be the resulting partitions.

(2) If the lengths of the partitions S1 and S2 differ, then refine the shorter one to the
length of the longer one by Algorithm 3.5. In the same way, take care that the
partitions C1 and C2 have the same length.

(3) Let Pi, i = 1, 2 be the concatenation of Si and Ci. Obviously, the Pi are partitions
of Z of the same length.

(4) By putting together affine mappings, construct an rcwa permutation σ which maps
P1 to P2 in such a way that the ith residue class in P1 is mapped to the ith residue
class in P2.

(5) Return σ.

Example 4.9. We determine an rcwa permutation which maps Z \ 0(4) to 1(4):

- In Step (1), we obtain the partitions S1 = {1(2), 2(4)}, S2 = {1(4)}, C1 = {0(4)}
and C2 = {0(2), 3(4)}.

- In Step (2), we refine S2 to {1(8), 5(8)} and C1 to {0(8), 4(8)}.
- In Step (3), we concatenate S1 and C1 to P1 := {1(2), 2(4), 0(8), 4(8)}, and S2

and C2 to P2 := {1(8), 5(8), 0(2), 3(4)}.

14 STEFAN KOHL

- In Step (4), we build our mapping

σ ∈ RCWA(Z) : n 7−→


4n− 3 if n ∈ 1(2),
2n + 1 if n ∈ 2(4),
n/4 if n ∈ 0(8),
(n + 2)/2 if n ∈ 4(8).

Algorithm 4.10 (Transitivity of CT(Z) on Unions of Residue Classes). Let S1, S2 ⊂ Z be
distinct nonempty unions of residue classes. We determine an element σ ∈ CT(Z) which
maps S1 to S2 as follows:

(1) If S1 ⊂ S2, then put D1 := S2 \ S1. Otherwise put D1 := Z \ S1.
(2) Put D2 := Z \ (D1 ∪ S2). Now we have a chain S1, D1, D2, S2 of 4 nonempty

sets starting at S1 and ending at S2 in which any two consecutive sets are disjoint.
(3) By Algorithm 3.6, write the sets S1, D1, D2 and S2 as unions of ‘few’ residue

classes. Let P1, . . . ,P4 be the resulting partitions into residue classes, and let
lmax be the maximum of the lengths of these partitions.

(4) If some of the partitions Pi are shorter than lmax, then refine them to length lmax

by Algorithm 3.5.
(5) Assume that Pi = (ri,1(mi,1), . . . , ri,lmax(mi,lmax)), i = 1, . . . , 4, and compute

σ :=
3∏

i=1

lmax∏
j=1

τri,j(mi,j),ri+1,j(mi+1,j).

(6) Return σ.

Remark 4.11. Given disjoint residue classes r1(m1) and r2(m2), the corresponding class
transposition is given by

τr1(m1),r2(m2) ∈ CT(Z) : n 7−→


(m2n + m1r2 −m2r1)/m1 if n ∈ r1(m1),
(m1n + m2r1 −m1r2)/m2 if n ∈ r2(m2),
n otherwise.

Example 4.12. We determine an element σ ∈ CT(Z) such that σ(1(3)) = 2(4) ∪ 3(4):

- In Step (1), we put D1 := Z \ 1(3) = 0(3) ∪ 2(3).
- In Step (2), we put D2 := Z \ ((0(3) ∪ 2(3)) ∪ (2(4) ∪ 3(4))) = 1(12) ∪ 4(12).
- In Step (3), we find the (in this example obvious) partitions {1(3)}, {0(3), 2(3)},
{1(12), 4(12)} and {2(4), 3(4)}.

- In Step (4), in order to obtain partitions of the same length, in our example we
only need to refine {1(3)} to {1(6), 4(6)}.

- In Step (5), we compute

σ := τ0(3),1(6) · τ2(3),4(6) · τ0(3),1(12) · τ2(3),4(12) · τ2(4),1(12) · τ3(4),4(12).

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 15

This yields

σ ∈ CT(Z) : n 7−→



(2n + 4)/3 if n ∈ 1(6),
6n− 2 if n ∈ 3(6),
(2n + 1)/3 if n ∈ 4(6),
6n− 5 if n ∈ 5(6),
n/2 if n ∈ 0(24) ∪ 18(24),
(3n− 4)/2 if n ∈ 2(24) ∪ 20(24),
(3n− 10)/2 if n ∈ 6(24) ∪ 12(24),
(n + 2)/2 if n ∈ 8(24) ∪ 14(24).

5. REPRESENTING GROUPS AS RCWA GROUPS

The purpose of this section is to describe how to represent a given group as an rcwa
group. This is easiest for the finite groups:

Definition 5.1. Let m ∈ N, and let Sm be the symmetric group of degree m. We define the
monomorphism ϕm : Sm ↪→CT(Z) by σ 7→ (σϕm : n 7→ n + σ(n modm)− n modm),
where we assume that Sm acts naturally on the set {0, 1, . . . ,m− 1}.

The group RCWA(Z) is not co-Hopfian. The following monomorphisms will play a
crucial role in several algorithms given in this section:

Definition 5.2. Given an injective rcwa mapping f , let πf : RCWA(Z) ↪→ RCWA(Z),
σ 7→ σf be the monomorphism defined by the properties ∀σ ∈ RCWA(Z) fσf = σf and
supp(im πf) ⊆ im f . Then we call πf the restriction monomorphism associated with f .

Sometimes we also need the right inverses of restriction monomorphisms:

Definition 5.3. Let f be an injective rcwa mapping, and let πf denote the restriction
monomorphism associated with f . Then we call the right inverse π̃f : im πf → RCWA(Z)
of πf the induction epimorphism associated with f .

In order to compute images of rcwa permutations under restriction monomorphisms and
induction epimorphisms, we need an algorithm to compute right inverses of injective rcwa
mappings:

Algorithm 5.4 (Right Inverses of Injective rcwa Mappings). Let f be an injective rcwa
mapping, and let m denote its modulus. Assume that the mapping f is represented by the
reduced coefficient list (af,r(m), bf,r(m), cf,r(m))r(m)∈Z/mZ. We compute a right inverse
of f , i.e. a mapping f̃ such that f · f̃ = 1, as follows:

(1) Put m̃ := lcmr(m)∈Z/mZ m · af,r(m)/cf,r(m).
(2) For all r̃(m̃) ∈ Z/m̃Z, put af̃ ,r̃(m̃) := 1, bf̃ ,r̃(m̃) := 0 and cf̃ ,r̃(m̃) := 1.
(3) For r = 0, . . . ,m− 1, do the following:

- For all r̃ ∈ {0, . . . , m̃ − 1} which lie in the image of r(m) under f , put
af̃ ,r̃(m̃) := cf,r(m), bf̃ ,r̃(m̃) := −bf,r(m) and cf̃ ,r̃(m̃) := af,r(m).

(4) Apply Algorithm 2.2 to the coefficient list (af̃ ,r̃(m̃), bf̃ ,r̃(m̃), cf̃ ,r̃(m̃))r̃(m̃)∈Z/m̃Z,
and return the result.

Algorithm 5.5 (Images of rcwa Permutations under Restriction Monomorphisms). Let f
be an injective rcwa mapping, and let σ be an rcwa permutation. We compute the image σ̃
of σ under the restriction monomorphism πf associated with f as follows:

16 STEFAN KOHL

(1) By Algorithm 5.4, compute a right inverse f̃ of f .
(2) Put σ̃ := f̃ · σ · f .
(3) By Algorithm 4.1, compute the image of f .
(4) By Algorithm 4.7, compute the restriction σ̃|im f of the permutation σ̃ to the image

of f .
(5) Return σ̃|im f .

Be careful not to confuse computing the image of an rcwa permutation under a restric-
tion monomorphism with restricting an rcwa permutation to a set.

Algorithm 5.6 (Images of rcwa Permutations under Induction Epimorphisms). Let f be
an injective rcwa mapping, and let σ be an rcwa permutation whose support is a subset of
im f . We compute the image of σ under the induction epimorphism π̃f as follows:

(1) By Algorithm 5.4, compute a right inverse f̃ of f .
(2) Return σ̃ := f · σ · f̃ .

In terms of runtime and memory requirements, computing right inverses corresponds to
computing inverses, and computing images under restriction monomorphisms and induc-
tion epimorphisms corresponds to computing conjugates.

Example 5.7. We compute the image of the class transposition τ : n 7→ n + (−1)n under
the restriction monomorphism associated with f : n 7→ 2n: A right inverse of f is

f̃ : n 7→

{
n/2 if n ∈ 0(2),
n if n ∈ 1(2).

We compute

f̃ · τ · f : n 7→


2n− 2 if n ∈ 1(2),
n + 2 if n ∈ 0(4),
n− 2 if n ∈ 2(4),

and restrict this mapping to the image of f to obtain

πf (τ) : n 7→


n if n ∈ 1(2),
n + 2 if n ∈ 0(4),
n− 2 if n ∈ 2(4).

This is the class transposition τ0(4),2(4).

Remark 5.8. We observe that the image of a class transposition τr1(m1),r2(m2) under a
restriction monomorphism πn 7→mn+r is τmr1+r(mm1),mr2+r(mm2). Therefore restriction
monomorphisms of the form πn 7→mn+r embed CT(Z) into itself.

Further we observe that any class transposition τr1(m1),r2(m2) can be obtained as an
image of τ under a restriction monomorphism – we have τr1(m1),r2(m2) = πµ(τ), where

µ : n 7−→

{
(m1n + 2r1)/2 if n ∈ 0(2),
(m2n + (2r2 −m2))/2 if n ∈ 1(2)

maps the residue classes 0(2) and 1(2) to r1(m1) and r2(m2), respectively.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 17

It is obvious that the image of an rcwa group under a restriction monomorphism or
under an induction epimorphism can be computed by applying Algorithm 5.5 respectively
Algorithm 5.6 to all stored generators.

Constructing direct products of rcwa groups and wreath products of rcwa groups with
finite groups is now more or less straightforward:

Algorithm 5.9 (Direct Products of rcwa Groups). Let G and H be finitely generated rcwa
groups. We compute an rcwa group isomorphic to the direct product of G and H as follows:

(1) By Algorithm 5.5, compute the image of G under the restriction monomorphism
πn 7→2n and the image of H under the restriction monomorphism πn 7→2n+1.

If G and H are subgroups of CT(Z), then by Remark 5.8 the computed images
are still subgroups of CT(Z).

(2) Return the rcwa group whose list of stored generators is the concatenation of the
lists of generators of the groups computed in Step (1).

Algorithm 5.10 (Wreath Products of rcwa Groups with Finite Groups). Let G be a fini-
tely generated rcwa group, and let P < Sm be a finite permutation group. We compute an
rcwa group isomorphic to the natural wreath product of G with P as follows:

(1) Let P̃ be the image of P under the embedding ϕm.
(2) Determine a set {r1(m), . . . , rk(m)} of representatives for the orbits on Z/mZ

under the action of P̃ .
(3) For i = 1, . . . , k, use Algorithm 5.5 to compute the image Gi of G under the

restriction monomorphism πn 7→mn+ri .
If G is a subgroup of CT(Z), then by Remark 5.8, the groups Gi are still

subgroups of CT(Z).
(4) Return the rcwa group whose list of stored generators is the concatenation of the

lists of generators of the groups G1, . . . , Gk and P̃ .

Example 5.11. We construct an rcwa group isomorphic to the natural wreath product
(Z,+) o A5 of the infinite cyclic group with the alternating group of degree 5. For this,
let G := 〈n 7→ n + 1〉 and P := 〈(1, 2, 3, 4, 5), (3, 4, 5)〉. In Step (1), we compute the
generators

n 7→

{
n + 1 if n ∈ Z \ 4(5),
n− 4 if n ∈ 4(5)

and n 7→


n if n ∈ 0(5) ∪ 1(5),
n + 1 if n ∈ 2(5) ∪ 3(5),
n− 2 if n ∈ 4(5)

of P̃ . The group P̃ acts transitively on the set {0(5), . . . , 4(5)}, therefore in Step (2) we
get k = 1 and r1(m) = 0(5). In Step (3), we compute G1 := πn 7→5n(G). The group G1

is generated by

n 7→

{
n + 5 if n ∈ 0(5),
n if n ∈ Z \ 0(5).

Now the result is the group which is generated by P̃ and G1.

It is already much less obvious how to construct wreath products of rcwa groups with
the infinite cyclic group (Z,+):

Algorithm 5.12 (Restricted Wreath Products of rcwa Groups with (Z,+)). Let G be
a finitely generated rcwa group. We compute an rcwa group isomorphic to the natural
restricted wreath product of G with (Z,+) as follows:

18 STEFAN KOHL

(1) By Algorithm 5.5, compute the image G̃ of G under πn 7→4n+3.
If G is a subgroup of CT(Z) then, by Remark 5.8, the group G̃ is still a sub-

group of CT(Z).
(2) Return the rcwa group whose list of stored generators is obtained by adding the

permutation τ · τ0(2),1(4) to the list of generators of G̃.

Algorithm 5.12 is valid since the images of the residue class 3(4) under the elements of
the cyclic group generated by τ · τ0(2),1(4) are pairwise disjoint residue classes.

Example 5.13. We construct an rcwa group isomorphic to the natural restricted wreath
product C2 o(Z,+) of the cyclic group of order 2 with the infinite cyclic group (Z,+):

Put G := 〈τ〉. In Step (1), we compute the image G̃ of G under the restriction monomor-
phism πn 7→4n+3 – we obtain G̃ = 〈τ3(8),7(8)〉. In Step (2), we add τ · τ0(2),1(4) to the set
of generators of G̃, and obtain the result 〈τ · τ0(2),1(4), τ3(8),7(8)〉.

Next we describe how to construct representations of free groups:

Algorithm 5.14 (Construction of Free Groups). Let r be a positive integer. We construct
a subgroup of CT(Z) isomorphic to the free group of rank r as follows:

(1) If r = 1, then return the cyclic group generated by τ · τ0(2),1(4).
(2) Put m := 2r.
(3) For i = 1, . . . , r, do the following:

- By Algorithm 4.10, construct an rcwa permutation σi ∈ CT(Z) which maps
the complement Z \ 2i− 2(m) to the residue class 2i− 1(m).

(4) Return the group which is generated by σ1, . . . , σr.

This algorithm uses an adaptation of the construction given on page 27 in [1] from
PSL(2, C) to CT(Z). As an analogue of the closed discs used there, the algorithm makes
use of the residue classes modulo twice the rank of the free group.

In case it is not important whether the result is a subgroup of CT(Z) or not, we can also
construct the σi in Step (3) by Algorithm 4.8. This sometimes yields rcwa permutations
with smaller moduli.

Example 5.15. We construct an rcwa group isomorphic to the free group of rank 2. For
this, we determine rcwa permutations σ1 and σ2 which map Z \ 0(4) to 1(4) and Z \ 2(4)
to 3(4), respectively. We use Algorithm 4.8, and obtain

σ1 : n 7→


4n− 3 if n ∈ 1(2),
2n + 1 if n ∈ 2(4),
n/4 if n ∈ 0(8),
(n + 2)/2 if n ∈ 4(8)

and σ2 : n 7→


4n− 1 if n ∈ 1(2),
2n + 7 if n ∈ 0(4),
(n− 2)/4 if n ∈ 2(8),
(n− 4)/2 if n ∈ 6(8)

(cf. Example 4.9). Now we have F2
∼= 〈σ1, σ2〉. This is in fact even a subgroup of CT(Z),

since σ1 = τ0(2),1(2) · τ3(4),5(8) · τ0(2),1(8) and σ2 = τ0(2),1(2) · τ1(4),7(8) · τ0(2),3(8) are
factorizations into generators.

We conclude this section by giving an algorithm to construct representations of free
products of finite groups:

Algorithm 5.16 (Free Products of Finite Groups). Let G0, . . . , Gm−1 be finite groups.
We construct a subgroup of CT(Z) isomorphic to their free product as follows:

(1) If the factors are two cyclic groups of order 2, then return 〈τ, τ0(2),1(4)〉.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 19

(2) Determine regular permutation groups P0, . . . , Pm−1 which are isomorphic to the
factors G0, . . . , Gm−1.

(3) Determine the images H0, . . . ,Hm−1 of the permutation groups P0, . . . , Pm−1

under the embeddings ϕ|P0|, . . . , ϕ|Pm−1|.
(4) By Algorithm 4.10, for any r ∈ {0, . . . ,m − 1} find an element σr ∈ CT(Z)

which maps the residue class 0(|Pr|) to the set Z \ r(m).
(5) Return the group which is generated by the conjugates Hσ0

0 , . . . ,H
σm−1
m−1 .

This algorithm follows the proof of Theorem 4.2 in [8]. Similar to the above, in case it
is not important whether the result is a subgroup of CT(Z) or not, we can also construct
the σr in Step (4) by Algorithm 4.8.

Example 5.17. We construct an rcwa group which is isomorphic to the free product
C2 ? C3

∼= PSL(2, Z) of the cyclic group of order 2 and the cyclic group of order 3:
- In Step (2), we put P0 := 〈(0, 1)〉 and P1 := 〈(0, 1, 2)〉.
- In Step (3), we find H0 = 〈τ〉 and H1 = 〈τ0(3),1(3) · τ0(3),2(3)〉.
- In Step (4), we determine two conjugating rcwa permutations:

– For r = 0, we need to find an rcwa permutation σ0 which maps the residue
class 0(2) to the set Z\0(2) = 1(2). For this, Algorithm 4.8 delivers σ0 := τ .

– For r = 1, we need to find an rcwa permutation σ1 which maps the residue
class 0(3) to the set Z\1(2) = 0(2). For this, Algorithm 4.8 delivers σ1 := α,
where α denotes the Collatz permutation mentioned in the introduction.

- In Step (5), we obtain the result C2 ? C3
∼= 〈τ, τ1(4),3(4) · τ0(2),1(4)〉.

6. TAME AND WILD RCWA GROUPS

Certain rcwa groups have a particularly uncomplicated structure. Accordingly we call
them tame:

Definition 6.1. We call an rcwa permutation σ tame if it permutes a partition of Z into
finitely many residue classes on each of which it is affine, and wild otherwise. We call
an rcwa group G tame if there is a common such partition for all elements of G, and wild
otherwise. We call the specified partitions respected partitions of σ respectively G.

For example, any rcwa permutation of finite order is tame. The same holds for any finite
rcwa group. Furthermore, all integral rcwa permutations are tame. An example of a tame
rcwa permutation of infinite order is n 7→ n + 1. This permutation respects the trivial
partition of Z.

Let G be a tame rcwa group, and assume that P is a respected partition of G. Then it is
an immediate consequence of the definition that G embeds into the wreath product of the
infinite dihedral group with the symmetric group of degree |P|.

Tame groups are therefore not interesting in themselves, but they play an important role
both in investigating rcwa groups by theoretical means and in computing in them.

For example, tameness is invariant under conjugation – if α ∈ RCWA(Z) respects
a partition P , then a conjugate αβ respects the partition consisting of the images of the
intersections of the residue classes in P with the sources of the affine partial mappings
of β under β.

Furthermore if a tame group does not act faithfully on a respected partition, then the
kernel of the action clearly does not act on N0. Thus as the group CT(Z) acts on N0, its
tame subgroups are finite.

However, the product of two tame permutations is in general not tame. Tameness of
products also does not induce an equivalence relation on the set of tame permutations: Let,

20 STEFAN KOHL

for example, a := τ1(6),4(6), b := τ0(5),2(5) and c := τ3(4),4(6). Then ab and bc are tame,
but ac is not.

In [6], a generalization of the above notion of tameness to not necessarily bijective rcwa
mappings is considered. Namely, an rcwa mapping is called tame if the set of moduli
of its powers is bounded, and wild otherwise. In [10] it is shown that in this sense, a
surjective, but not injective rcwa mapping is always wild. Theorem 2.5.8 in [6] establishes
the compatibility of these characterizations of tameness, namely it states that an rcwa group
is tame if and only if the set of the moduli of its elements is bounded. This motivates the
following definition:

Definition 6.2. Let G be an rcwa group. If the group G is tame, we define its modulus
Mod(G) by the lcm of the moduli of its generators. If G is wild, we set Mod(G) := 0.

In what follows we give some criteria and methods to decide whether an rcwa group is
tame or wild. Obviously, an rcwa group which has a wild element is itself wild. Therefore
in order to disprove tameness, it is sufficient to find a wild element. In practice, good can-
didates can usually be found by looking at short products of generators and their inverses.
On the other hand, tameness can be established by finding a respected partition.

Criterion 6.3 (‘Balancedness’ Criterion). Let σ be an rcwa permutation. Assume that
there is a prime p which divides the multiplier of the mapping σ, but not its divisor, or vice
versa. Then σ is wild.

Proof. Without loss of generality we can assume that p divides the divisor, but not the
multiplier of σ. Assume that σ is tame, and let P be a respected partition. Then there is a
cycle (r0(m0), . . . , rl−1(ml−1)) ⊆ P such that the following hold:

(1) There is an index i such that p|(mi/m(i+1) mod l).
(2) There is no index j such that p|(m(j+1) mod l/mj).

This yields a contradiction. �

For example, the Collatz permutation α mentioned in the introduction has multiplier 4
and divisor 3. Therefore Criterion 6.3 can be used to show that α is wild.

Two further useful criteria are based on certain directed graphs assigned to rcwa map-
pings:

Definition 6.4. Let f be an rcwa mapping, and let m be a positive integer. We define the
transition graph Γ(f,m) of f for modulus m as follows:

- The vertices of Γ(f,m) are the residue classes (mod m).
- There is an edge from r1(m) to r2(m) if and only if f(r1(m)) ∩ r2(m) 6= ∅.

Criterion 6.5 (Sources-and-Sinks Criterion). Let σ be an rcwa permutation. Assume that
there is a positive integer m such that the transition graph Γ(σ,m) has a weakly-connected
component which is not strongly-connected. Then σ is wild.

This is part of the assertion of Theorem A.11 in [6].

Example 6.6. We look at the transition graph of σ := τ · τ0(2),1(4) for modulus 4 in order
to see that this rcwa permutation is wild. We have

σ ∈ CT(Z) : n 7−→


2n− 1 if n ∈ 1(2),
n/2 if n ∈ 0(4),
n + 1 if n ∈ 2(4),

and our graph looks like this:

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 21

0(4) −→ 2(4) −→ 3(4) −→ 1(4)

It is obvious that this graph is weakly-connected, but not strongly-connected. Therefore
by Criterion 6.5, the rcwa permutation σ is indeed wild. Note, however, that Criterion 6.3
would not have established the wildness of σ.

There are wild rcwa permutations which can neither be shown to be wild by Crite-
rion 6.3 nor by Criterion 6.5:

Example 6.7. Put σ := τ2(4),3(4) · τ4(6),8(12) · τ3(4),4(6). Then we have

σ ∈ CT(Z) : n 7−→



(3n + 2)/2 if n ∈ 2(4),
(n + 1)/3 if n ∈ 8(12),
2n if n ∈ 4(12),
2n− 2 if n ∈ 11(12),
n− 1 if n ∈ 3(12) ∪ 7(12),
n if n ∈ 1(4) ∪ 0(12).

The permutation σ has cycles of any length l ≡ 1 (mod 3), and the transition graph of σ
for modulus 12 looks as follows (for simplicity, we have put together the vertices 2(12),
6(12) and 10(12)):

2(4) −→ 4(12) −→ 8(12) 11(12)

3(12)

7(12)

−→
←−

�
�

��

@
@

@@

@
@

@@

�
�

��

For such cases, there is yet another useful criterion:

Criterion 6.8 (Loops Criterion). Let σ be an rcwa permutation, and let m be its modulus.
Assume that the transition graph Γ(σ,m) has loops. Then σ is wild.

For a proof, see [7]. We give an algorithm for computing transition graphs of rcwa
mappings:

Algorithm 6.9 (Computation of Transition Graphs). Let f be an rcwa mapping, and let
m be a positive integer. We compute the transition graph Γ(f,m) of f for modulus m as
follows:

(1) Set up an m×m zero matrix M , with rows and columns labelled from 0 to m−1.
(2) For n = 0, . . . ,Mod(f) ·Div(f) ·m− 1, put Mn mod m,f(n) mod m := 1.
(3) Return the graph with vertices 0(m), . . . ,m − 1(m), in which there is a directed

edge from r1(m) to r2(m) if and only if Mr1,r2 = 1.

22 STEFAN KOHL

Algorithm 6.9 basically does nothing other than running over a sufficiently long range
of integers to pick up all possible transitions between residue classes (mod m) induced
by f .

Further examples of drawings of transition graphs can be found in [6].
In practice, in order to apply Criterion 6.5 to an rcwa permutation σ, it is a sensible

choice first to look at the transition graph Γ(σ,Mod(σ)).
Assume that we have an rcwa group in which we have not found a wild element after

having applied the above criteria to various of its elements. Then we may wish to verify
that it is in fact tame. In order to do this, we need to construct a respected partition. For
this, we first determine an educated guess for the modulus of our group:

Method 6.10 (Obtaining a Guess for the Modulus of an rcwa Group). Let G be an rcwa
group. In order to obtain a reasonable guess for the modulus of G, we proceed as follows:

- For l = 1, 2, . . ., compute the least common multiple ml of the moduli of all
products of at most l elements of the union of the set of stored generators of G and
the set of their inverses.

- Once the sequence (ml)l∈N seems to become stable, return its apparent limit.

Example 6.11. We would like to obtain an educated guess for the modulus of the group G
which is generated by

g : n 7→



2n + 2 if n ∈ 0(3),
n + 4 if n ∈ 1(6),
n/2 if n ∈ 2(6),
n− 4 if n ∈ 4(6),
n− 2 if n ∈ 5(6)

and h : n 7→



2n + 2 if n ∈ 0(3),
n− 2 if n ∈ 1(6),
n/2 if n ∈ 2(6),
n− 1 if n ∈ 4(6),
n + 1 if n ∈ 5(6).

We compute balls around 1, and look at the moduli of their elements:
- In the ball of radius 1, we find the identity and 4 elements with modulus 6.
- In the ball of radius 2, we find the identity, 8 elements with modulus 6, and 8 ele-

ments with modulus 12.
- In the ball of radius 3, we find the identity, 24 elements with modulus 6, and

28 elements with modulus 12.
- In the ball of radius 4, we find the identity, 44 elements with modulus 6, and

114 elements with modulus 12.
At this point, we guess that all elements of the group G have moduli which divide 12, and
that therefore G has modulus 12. We will verify this guess in the example following the
next algorithm.

The following algorithm assumes that we already know the modulus:

Algorithm 6.12 (Determination of Respected Partitions). Let G be a tame rcwa group,
and let m be its modulus. We determine a respected partition of G as follows:

(1) Let l be a list of the residue classes (mod m).
(2) By Algorithm 4.6, compute the support S of G.
(3) By Algorithm 3.6, write the complement of S as a union of ‘few’ residue classes,

and let P be a list of these.
(4) Remove all residue classes from l which intersect trivially with S.
(5) Loop over l, until hitting a residue class r(m) such that the moduli of all residue

classes in the orbit Ω of r(m) under the action of G divide m.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 23

(6) Put P := P ∪ Ω and S := S \ ∪ri(mi)∈Ω ri(mi).
(7) If S 6= ∅ then go to Step (4), otherwise return P .

Afterwards we can check easily whether our guessed modulus was correct. The only
things we need to do are to verify whether P is indeed a list of single residue classes, that
G acts on P and that all restrictions of generators of G to residue classes in P are affine.

Of course, Algorithm 6.12 can be used to compute respected partitions of tame rcwa
permutations as well, if one applies it to the cyclic group which is generated by the respec-
tive permutation.

Example 6.13. We determine a respected partition of the group G from Example 6.11:
- In Step (1), we initialize l with {0(12), 1(12), . . . , 11(12)}.
- In Step (2), we compute the support S of G, and obtain S = Z.
- In Step (3), the complement is empty, thus we initialize P with the empty list.
- In Step (4), there is nothing to do, as no residue class intersects trivially with Z.
- In Step (5), we first compute the orbit 0(12)G of the residue class 0(12) under the

action of G. We obtain

0(12)G = {0(12), 1(12), 3(12), 4(12), 5(12), 6(12), 7(12),

9(12), 10(12), 11(12), 2(24), 8(24), 14(24), 20(24)}.
This orbit contains four residue classes whose moduli do not divide our guessed
modulus 12. We can skip 1(12), since 1(12) ∈ 0(12)G. Next we compute
2(12)G = {0(6), 1(6), 3(6), 4(6), 5(6), 2(12), 8(12)}. This orbit satisfies our
condition, thus we put Ω := 2(12)G.

- In Step (6), we add the residue classes in Ω to P . Further we subtract the union of
the residue classes in Ω from S.

- In Step (7), we observe that S = ∅, conclude that we are ready and find that our
result is P = {0(6), 1(6), 3(6), 4(6), 5(6), 2(12), 8(12)}.

7. COMPUTING GROUP ORDERS AND ELEMENT ORDERS

In this section, we explain how to compute the order of a given rcwa permutation and the
order of a given rcwa group. Using respected partitions, the order of an rcwa permutation
can be computed in the following way:

Method 7.1 (Order of an rcwa Permutation, Basic Approach). Let σ be an rcwa permuta-
tion. We compute the order of σ as follows:

(1) By applying the criteria discussed in Section 6, check whether σ is tame. If it is
not tame, then return∞.

(2) By Algorithm 6.12, compute a respected partition P of σ.
(3) Determine the order k of the permutation which is induced by σ on the partitionP ,

and put σ̃ := σk.
(4) If σ̃ = 1, then return k.
(5) If σ is not class-wise order-preserving and σ̃2 = 1, then return 2k. Otherwise

return∞.

However if the modulus of σ is large, applying the wildness criteria and determining a
respected partition both may take an unnecessarily long time.

Using a fancier approach, the order of an rcwa permutation can often be determined
much faster. For example, one can sometimes detect infinite order by just evaluating a
suitable epimorphism:

24 STEFAN KOHL

Remark 7.2. From [6], Section 2.11 and 2.12 we know that there are epimorphisms

π+ : RCWA+(Z)→ (Z,+), σ 7→ 1
m

∑
r(m)∈Z/mZ

br(m)

|ar(m)|

and

π− : RCWA(Z)→ Z×, σ 7→ (−1)

π+(σ) +
∑

r(m): ar(m)<0

m− 2r

m
,

where we use the notation for the coefficients introduced in Definition 1.1.

For order computations, mainly the first of these epimorphisms is useful. However we
will see later that both epimorphisms can be used in the membership test for rcwa groups.

Method 7.3 (Order of an rcwa Permutation, Fancier Approach). Let σ be an rcwa permu-
tation. We compute the order of σ as follows:

(1) If σ = 1, then return 1.
(2) If σ is class-wise order-preserving and does not lie in the kernel of the epimor-

phism π+, then return∞.
(3) Apply Criterion 6.3. If this establishes that σ is wild, then return∞.
(4) Put e := 1.
(5) Repeat the following until e either remains stable during a prescribed number of

iterations or exceeds a prescribed bound:
(a) Pick a ‘random’ integer n.
(b) Attempt to compute the cycle of σ containing n. Stop if the length or the

elements exceed some prescribed bounds.
(c) If the cycle has been determined in full, then let l be its length and put

e := lcm(e, l). Otherwise exit the loop and assume that e has exceeded
the prescribed bound.

(6) If e has not exceeded the prescribed bound, then check whether σe = 1. If so, then
return e. When computing the power σe, stop if the modulus exceeds a prescribed
bound.

(7) Compute the order of σ by Method 7.1, and return the result.

Example 7.4. We would like to determine the order of σ := τ0(6),4(6) ·τ3(4),0(6) ·τ2(4),1(6).
We have

σ ∈ CT(Z) : n 7−→



(3n− 9)/2 if n ∈ 3(8),
(9n− 35)/4 if n ∈ 7(8),
n + 4 if n ∈ 0(12),
(2n + 4)/3 if n ∈ 1(12),
(3n− 4)/2 if n ∈ 2(12),
(3n + 8)/2 if n ∈ 6(12),
(2n + 1)/3 if n ∈ 4(18) ∪ 16(18),
(4n + 14)/9 if n ∈ 10(18),
n if n ∈ 5(12) ∪ 8(12) ∪ 9(12).

Using Method 7.3, we proceed as follows:

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 25

- The rcwa permutation σ is class-wise order-preserving, thus in Step (2) we check
whether it lies in the kernel of the epimorphism π+: We have

π+(σ) =
1
8
·
(
−9
3

+
−35
9

)
+

1
12
·
(

4
1

+
4
2

+
−4
3

+
8
3

)
+

2
18
· 1
2

+
1
18
· 14

4
= 0,

therefore at this point we cannot reach any conclusions concerning the order of σ.
- In Step (3), we find that Mult(σ) = Div(σ) = 36. Therefore Criterion 6.3 is not

applicable.
- Now we look at cycles of σ. We put e := 1, and choose a tentative order bound

of 1000.
– We pick n = 0. The cycle of σ containing 0 is (0,4,3). This cycle has length 3,

therefore we put e := lcm(e, 3) = 3.
– We pick n = 1, and obtain the cycle (1,2). This cycle has length 2, therefore

we put e := lcm(e, 2) = 6.
– We pick n = 6, and obtain the cycle (6,13,10). The length of this cycle

already divides e.
– We pick n = 14, and obtain the cycle (14,19,24,28) of length 4. We put

e := lcm(e, 4) = 12.
– We pick n = 15, and obtain the cycle (15,25,18,31,61,42,67,96,100,46,22)

of length 11. Now we already have e := lcm(e, 11) = 132.
– We pick n = 23, and obtain the cycle (23,43,60,64,30,49,34) of length 7.

This yields e := lcm(e, 7) = 924.
– We pick n = 38, and obtain the cycle (38,55,115,168,172,78,121,82) of

length 8. This yields e := lcm(e, 8) = 1848, which is beyond our bound
of 1000.

Since we have failed to determine the order of σ so far, we switch to Method 7.1.
In Step (1) of this method, it is checked whether one of our wildness criteria is ap-

plicable. We had already checked the ‘Balancedness’ Criterion 6.3. Next we check the
‘Sources-and-Sinks’ Criterion 6.5. This fails to be applicable as well, thus it remains to
check the ‘Loops’ Criterion 6.8. Indeed we find that the vertices 7(72) and 46(72) of the
transition graph of σ for modulus 72 carry loops, which certifies that σ is wild and has
therefore infinite order.

We give a method to determine the order of an rcwa group:

Method 7.5 (Order of an rcwa Group). Let G be an rcwa group. We compute the order
of G as follows:

(1) If G is class-wise order-preserving, and if any of the generators does not lie in the
kernel of the epimorphism π+, then return∞.

(2) By applying the criteria discussed in Section 6, check whether G is wild. If it is,
then return∞.

(3) By Algorithm 6.12, construct a respected partition P of G.
(4) If G is not class-wise order-preserving, then refine the partition P by splitting each

of the residue classes ri(mi) ∈ P into 3 residue classes ri(3mi), ri + mi(3mi)
and ri + 2mi(3mi).

(5) Check whether the action of G on P is faithful. For this, proceed as follows:
(a) Choose a set of representatives for the residue classes in P .

26 STEFAN KOHL

(b) Check whether the orbits of all these representatives under the action of G
have length at most |P|. If yes, then the action is faithful. If not, then it is not
faithful.

(6) If the action of G on P is faithful, then return the order of the permutation group
induced by G on P . Otherwise return∞.

Example 7.6. We compute the order of the group G from Example 6.11:

- In Step (1), we find that G is class-wise order-preserving, but that both genera-
tors lie in the kernel of the epimorphism π+. Therefore we cannot yet reach any
conclusions concerning the group order.

- Steps (2)-(4): We already know from Example 6.13 that the group G is tame
and that it respects the partition P = {0(6), 1(6), 3(6), 4(6), 5(6), 2(12), 8(12)}.
Since G is class-wise order-preserving, there is no need to refine this partition.

- Steps (5)-(6): We choose the set {0, 1, 3, 4, 5, 2, 8} of representatives for the resi-
due classes in P . We start with the element 0 of this set, and put S := {0}. Then
we unite the set S with its images under the generators of G: After doing this for
the first time, we get S = {0, 2}, after the second time, we get S = {0, 1, 2},
after the third time, we get S = {−1, 0, 1, 2, 5} and after the fourth time, we get
S = {−3,−1, 0, 1, 2, 3, 5, 6}. Now we have |S| = 8 > 7 = |P|, which shows
that the action of G on P is not faithful. We conclude that |G| =∞.

8. EXTRACTING ROOTS OF TORSION ELEMENTS

Given an rcwa permutation σ ∈ CT(Z) of finite order and given a positive integer k,
there is always an rcwa permutation σ̃ such that σ̃k = σ (cf. Theorem 2.6 in [8]). We
describe an algorithm to extract such roots:

Algorithm 8.1 (Roots of an rcwa Permutation of Finite Order). Let σ be an rcwa permuta-
tion of finite order which can be written as a product of class transpositions, and let k ∈ N.
We determine a k-th root σ̃ of σ as follows:

(1) Put o := ord(σ). Further let ksing be the product of the prime factors of k which
divide o, and put kreg := k/ksing.

(2) Put σ̃reg := σk̃reg , where k̃reg denotes the inverse of kreg modulo o.
(3) If ksing = 1, then return σ̃reg.
(4) By Algorithm 6.12, compute a respected partition P of σ̃reg.
(5) Put σ̃ := 1.
(6) Repeat the following until P = ∅:

(a) Pick a residue class r(m) from P , and compute the cycle c of σ̃reg on P
which contains r(m). Let l be the length of c.

(b) Remove the residue classes in the cycle c from P .
(c) Replace all residue classes in the cycle c by their partitions into ksing residue

classes with the ksing-fold modulus. This means that a residue class r(m) is
replaced by the list of the residue classes (mod ksing · m) with the residues
r, r+m, r+2m, . . . , r+(ksing−1)m. Therefore c is now an l×ksing-matrix
of residue classes.

(d) For i = 1, . . . , l do for j = 1, . . . , ksing do if i and j are not both equal to 1,
then put σ̃ := σ̃ · τc1,1,ci,j .

(7) Return σ̃.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 27

Example 8.2. Given

σ ∈ CT(Z) : n 7−→


2n + 3 if n ∈ 0(2),
(n− 1)/2 if n ∈ 1(4),
n− 2 if n ∈ 3(4),

we would like to find an rcwa permutation σ̃ such that σ̃60 = σ. We proceed as follows:
- In Step (1), we determine the order of σ, and obtain o = 3. Further we let ksing

be the product of the prime factors of 60 which divide 3, thus ksing := 3, and put
kreg := 60/ksing = 20.

- In Step (2), we determine the inverse k̃reg of 20 modulo 3, and obtain k̃reg = 2.
Accordingly we put σ̃reg := σ2. We have

σ̃reg ∈ CT(Z) : n 7−→


2n + 1 if n ∈ 0(2),
n + 2 if n ∈ 1(4),
(n− 3)/2 if n ∈ 3(4).

- In Step (4), we compute a respected partition P of σ̃reg by Algorithm 6.12. We
obtain P = {0(2), 1(4), 3(4)}.

- Steps (5)-(7): We initialize σ̃ with 1, and proceed as follows:
– In Step (6.a), we pick the residue class 0(2) from P , and compute the cycle

c = (0(2), 1(4), 3(4)) of σ̃reg on P which contains 0(2).
– In Step (6.b), we remove the residue classes in c from P . Afterwards, in our

example we already have P = ∅.
– In Step (6.c), we split each of the residue classes in c into ksing = 3 parts, and

get c = ((0(6), 2(6), 4(6)), (1(12), 5(12), 9(12)), (3(12), 7(12), 11(12))).
– In Step (6.d), we multiply σ̃ by the class transpositions τ0(6),2(6), τ0(6),4(6),

τ0(6),1(12), τ0(6),5(12), τ0(6),9(12), τ0(6),3(12), τ0(6),7(12), and τ0(6),11(12) in the
given order.

In this example, we need to run through the loop in Step (6) only once, since σ̃reg

induces only one cycle on P . We finally obtain our 60th root

σ̃ ∈ CT(Z) : n 7−→



n + 2 if n ∈ 0(6) ∪ 2(6),
n + 4 if n ∈ 1(6) ∪ 3(12) ∪ 5(12),
2n− 7 if n ∈ 4(6),
n− 6 if n ∈ 9(12),
(n− 11)/2 if n ∈ 11(12).

Looking at the monomorphisms ϕm, it is an immediate observation that any finite group
embeds into a divisible residue-class-wise affine torsion group.

9. ON THE MEMBERSHIP PROBLEM

The purpose of this section is to present a couple of methods and criteria which can be
used to solve the following problem by means of computation:

Problem 9.1 (Membership Problem). Given an rcwa group G with generators σ1, σ2, . . .
and given a further rcwa permutation σ, decide whether σ is an element of G or not.

We will use the notation introduced in Problem 9.1 throughout this section. At the
beginning, we list a number of criteria for disproving membership.

28 STEFAN KOHL

In Section 6, we have discussed tame rcwa permutations and groups. We immediately
get the following criterion:

Criterion 9.2 (Tame Group, Wild Permutation Criterion). If σ is wild and G is tame, then
σ is not an element of G.

This shows e.g. that the Collatz permutation α mentioned in the introduction does not
lie in the group G given in Example 6.11.

Later in this section we will describe how to solve the membership problem for tame
rcwa groups. However, there are criteria whose application is computationally much
cheaper. For example, from Lemma 2.5 we obtain the following criterion:

Criterion 9.3 (Multiplier-and-Divisor Criterion). If the multiplier or the divisor of σ has
a prime factor which divides neither the multiplier nor the divisor of any of the generators
σi, then σ is not an element of G.

This shows again that the Collatz permutation α is not an element of the group G from
Example 6.11 – both generators of G have multiplier and divisor 2, but the divisor of the
Collatz permutation is 3.

Lemma 2.7, Assertion (2), yields a very similar criterion for the moduli:

Criterion 9.4 (Modulus Criterion). If the modulus of σ has a prime factor which divides
the modulus of none of the generators σi, then σ is not an element of G.

Example 9.5. We look again at the group G from Example 6.11. Further let

σ ∈ CT(Z) : n 7→

{
n + 1 if n ∈ 0(5) ∪ 1(5) ∪ 2(5) ∪ 3(5),
n− 4 if n ∈ 4(5).

Then we have Mod(σ) = 5. Since the generators of G have both modulus 6, Criterion 9.4
shows that σ /∈ G.

A further obvious criterion is the following:

Criterion 9.6 (Class-Wise Order-Preservingness Criterion). If all generators σi are class-
wise order-preserving, but σ is not, then σ is not an element of G.

Criterion 9.6 shows for example that the permutation n 7→ −n is not an element of the
group G from Example 6.11.

There are some very simple criteria based on the action of G on Z:

Criterion 9.7 (Support Criterion). If the support of σ is not a subset of the support of G,
then σ is not an element of G.

Criterion 9.8 (Fixes Nonnegative Integers Criterion). If all σi map the set of nonnegative
integers to itself, but σ does not do so, then σ is not an element of G.

Criterion 9.8 shows for example that the permutation n 7→ n + 1 does not lie in the
group CT(Z).

Another such criterion uses finite orbits:

Criterion 9.9 (Finite Orbits Criterion). If there is a finite orbit on Z under the action of G
which σ does not map to itself, then σ is not an element of G. The same holds if there is a
finite orbit on which σ induces a permutation which does not lie in the permutation group
induced by G on that orbit.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 29

In practice one can choose an interval I := {−n, . . . , n}, compute all finite orbits of G
on Z which intersect nontrivially with I and whose length is less than some given bound
or whose elements all have an absolute value less than a given bound, and check whether
Criterion 9.9 applies to one of them.

Example 9.10. Let G := 〈τ10(12),0(15) · τ3(14),8(14), τ1(5),10(15)〉 and σ := τ10(12),0(15).
We show that σ /∈ G:

- None of the Criteria 9.2, 9.3, 9.4, 9.6, 9.7 or 9.8 is applicable.
- Although the group G has very many finite orbits of very many different lengths,

we do not find one which is not fixed setwise by σ as well.
(‘Typically’, if there are many finite orbits, the chance that all of them are fixed

by a given non-member as well is very small – thus ‘usually’ non-membership in
a group with many finite orbits can already be certified at this point.)

- We observe that the group G has the finite orbit

Ω := {31, 36, 100, 101, 106, 115, 120, 269, 274, 310, 325, 330, 375}.
We further observe that G induces on Ω the group

H := 〈(31, 36)(101, 106, 115, 120)(269, 274, 325, 330)(310, 375),

(31, 100)(36, 115)(101, 310)(106, 325)〉 ∼= PSL(3, 3),

and that σ induces on Ω the permutation

σ̃ := (106, 120)(274, 330)(310, 375).

Using standard methods to test membership in a finite permutation group, we find
that σ̃ /∈ H . Now by Criterion 9.9, we conclude that σ /∈ G.

A further criterion uses partitions of Z into unions of residue classes:

Criterion 9.11 (Invariant Partition Criterion). Let m be a positive integer, and assume that
there is a partition P of Z into unions of residue classes (mod m) which is invariant under
the action of G. If σ does not leave P invariant, then σ is not an element of G.

In practice, sensible choices for m are multiples of the moduli of the generators of G.

Example 9.12. Let G := 〈τ1(4),2(4) · τ1(4),3(4), τ3(9),6(18) · τ1(6),3(9)〉 and σ := τ1(6),9(36).
We show that σ /∈ G:

- We find that G leaves the partition

P := {1(6) ∪ 3(9) ∪ 2(12) ∪ 5(12) ∪ 6(18) ∪ 15(36) ∪ 18(36)

∪ 22(36) ∪ 23(36) ∪ 27(36), 9(36) ∪ 10(36) ∪ 11(36),

33(36) ∪ 34(36) ∪ 35(36), 4(12) ∪ 8(12) ∪ 0(36)}
of Z into unions of residue classes (mod 36) invariant.

- We observe that the residue classes 1(6) and 9(36) which are interchanged by σ
belong to distinct parts in P . Now by Criterion 9.11, we conclude that σ /∈ G.

Two further criteria make use of the epimorphisms described in Remark 7.2:

Criterion 9.13 (First Epimorphism Criterion). If all generators of G lie in the kernel
of π−, but σ does not do so, then σ is not an element of G.

Criterion 9.14 (Second Epimorphism Criterion). Assume that G < RCWA+(Z), that σ
is class-wise order-preserving and that gcd{π+(σ1), . . . , π+(σr)} - π+(σ). Then σ is not
an element of G.

30 STEFAN KOHL

Example 9.15. Let G := 〈σ1, σ2〉 < RCWA(Z), where σ1 and σ2 are given by

n 7→



−2n + 2 if n ∈ 0(12),
n + 2 if n ∈ 1(6) ∪ 5(6),
(n− 2)/2 if n ∈ 2(24) ∪ 10(24),
−n + 2 if n ∈ 3(6),
2n + 2 if n ∈ 4(12) ∪ 8(12),
n if n ∈ 6(24) ∪ 22(24),
−n + 4 if n ∈ 14(24),
(−n + 10)/2 if n ∈ 18(24)

and n 7→



n + 3 if n ∈ 0(10),
n + 10 if n ∈ 1(10),
−n + 4 if n ∈ 2(5),
n− 3 if n ∈ 3(10),
−n + 8 if n ∈ 4(5),
−n + 10 if n ∈ 5(10),
n + 2 if n ∈ 6(10),
n− 2 if n ∈ 8(10),

respectively. Further let

σ ∈ RCWA(Z) : n 7→



2n + 3 if n ∈ 0(10) ∪ 6(10) ∪ 8(10),
n− 5 if n ∈ 1(20) ∪ 17(20),
−2n + 6 if n ∈ 2(10) ∪ 4(10),
(n− 3)/2 if n ∈ 3(40) ∪ 11(40) ∪ 19(40),
n if n ∈ 5(20) ∪ 9(20) ∪ 13(20),
(n− 13)/2 if n ∈ 7(20) ∪ 15(20),
(−n + 11)/2 if n ∈ 23(40) ∪ 31(40) ∪ 39(40).

A couple of additions, subtractions, multiplications and divisions of coefficients reveal that
π−(σ1) = π−(σ2) = 1, but π−(σ) = −1 (it is even feasible to do these computations by
hand!). By Criterion 9.13, we conclude that σ /∈ G.

We describe a method to solve the membership problem for tame rcwa groups:

Method 9.16 (Membership Test for Tame Groups). Assume that G and σ are tame, and
let m denote the modulus of G. In order to find out whether σ is an element of G or not,
we proceed as follows:

(1) If Mod(σ) - m, then return false.
(2) By Algorithm 6.12, determine a respected partition P of G.
(3) If σ does not respect the partition P , then return false.
(4) Determine the permutation σP which is induced by σ on P , and the finite permu-

tation group GP which is induced by G on P .
(5) If σP /∈ GP , then return false.
(6) By element factorization in the finite permutation group GP , determine an element

σ̃ of G which induces the same permutation σP on P as σ does.
(7) Put k := σ · σ̃−1.
(8) Compute the kernel K of the action of G on P .
(9) Check whether k is an element of K. As K is a polycyclic group, this can be done

by the membership test for polycyclically presented groups. If k ∈ K, then return
true, otherwise return false.

While the author knows a method to perform Step (8) and has implemented it in RCWA ,
this method can likely be improved and be turned into an algorithm. Therefore, here we
only give a brief outline of how it works:

Method 9.17 (Outline: Kernel of Action on Respected Partition). Perform a random walk
on the group G, and take powers of the elements encountered along the way by the orders

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 31

of the induced permutations on the respected partition P to get kernel elements. Collect
kernel generators in this way until some condition is fulfilled from which one can conclude
that the generators picked up so far generate indeed the entire kernel.

Turning Method 9.17 into an algorithm would turn Method 9.16 into an algorithm as
well. Concerning algorithms for finite permutation groups and polycyclic groups, we refer
to [4]. For the latter, we refer also to [2].

We observe that the kernel of the action of an rcwa group on a respected partition is
generated by products of rcwa permutations of the following types:

Definition 9.18. Let r(m) ⊆ Z be a residue class.

(1) We define the class shift νr(m) ∈ RCWA(Z) by

νr(m) : n 7→

{
n + m if n ∈ r(m),
n otherwise.

(2) We define the class reflection ςr(m) ∈ RCWA(Z) by

ςr(m) : n 7→

{
−n + 2r if n ∈ r(m),
n otherwise,

where we assume that 0 6 r < m.

For convenience, we set ν := νZ : n 7→ n + 1 and ς := ςZ : n 7→ −n.

Example 9.19. Let G be the group generated by

σ1 : n 7→


2n + 1 if n ∈ 0(2),
(n− 1)/2 if n ∈ 1(4),
−n + 6 if n ∈ 3(4)

and σ2 : n 7→


n + 6 if n ∈ 0(3),
−n + 2 if n ∈ 1(3),
n if n ∈ 2(3).

We would like to find out whether

σ ∈ RCWA(Z) : n 7→



2n− 419 if n ∈ 0(6),
(−n + 73)/2 if n ∈ 1(12),
2n + 1 if n ∈ 2(6),
(n + 161)/2 if n ∈ 3(12),
−2n− 115 if n ∈ 4(6),
(n− 1)/2 if n ∈ 5(12),
n + 4 if n ∈ 7(12),
−n− 276 if n ∈ 9(12),
−n + 6 if n ∈ 11(12)

is an element of G or not. We proceed as follows:

- First of all, we check that none of our wildness criteria applies to any of the ele-
ments of a ball of small radius around 1 in G. After that, we already have some
confidence that G is tame.

- In Step (1), we use Method 6.10, to determine an educated guess for the modulus
of G. We obtain 12. Since this is a multiple of Mod(σ) = 12, we cannot disprove
membership at this point.

32 STEFAN KOHL

- In Step (2), we use Algorithm 6.12 to determine a respected partition P of G. We
obtain

P = {0(6), 2(6), 4(6), 1(12), 3(12), 5(12), 7(12), 9(12), 11(12)}.

As a side-effect, now we know that G is tame.
- In Step (3), we check whether σ respects the partitionP . It does so, thus we cannot

disprove membership at this point.
- In Step (4), we determine the permutation

σP = (0(6), 1(12)) (2(6), 5(12)) (4(6), 9(12), 3(12)) (7(12), 11(12))

induced by σ on P , and the group

GP = 〈(0(6), 1(12)) (2(6), 5(12)) (4(6), 9(12)) (7(12), 11(12)),

(3(12), 9(12))〉

induced by G on P .
- In Step (5), we check whether σP is an element of GP . This is the case (it is just

the 5th power of the product of the two generators), thus we still cannot disprove
membership of σ in G.

- In Step (6), we put σ̃ := (σ1 · σ2)5. Now, σ̃ induces on P the same permutation
as σ does.

- In Step (7), we put k := σ · σ̃−1 and obtain

k ∈ RCWA(Z) : n 7−→



−n + 210 if n ∈ 0(6),
−n + 62 if n ∈ 1(12),
n if n ∈ 2(6) ∪ 5(12),
n + 168 if n ∈ 3(12),
n + 60 if n ∈ 4(6),
−n + 2 if n ∈ 7(12),
n + 288 if n ∈ 9(12),
−n + 10 if n ∈ 11(12).

- In Step (8), we compute the kernel K of the action of G on P . We obtain

K = 〈ς0(6) · ς1(6) · ς11(12) · ν−1
11(12) · ν1(12) · ν0(6),

ν2
0(6), ν9(12) · ν4(6), ν

2
1(12), ν

2
3(6)〉.

- Now our task is to find out whether k is an element of K or not. We proceed as
follows:

– We look at the group

K̂ := 〈ςr(m), νr(m) | r(m) ∈ P〉,

and set up the natural isomorphism ϕ from K̂ to the polycyclic group D|P|∞ .
– We compute the images of K and k under ϕ. The image of an rcwa permuta-

tion g under ϕ can be computed as follows:
∗ Compute the restrictions g|r(m) of g to the residue classes r(m) ∈ P .
∗ Write any g|r(m) in the form ςε

r(m) ·ν
n
r(m), where ε ∈ {0, 1} and n ∈ Z.

∗ Replace ςr(m) and νr(m) by the generators of order 2 respectively ∞
of the corresponding direct factor of the image of ϕ.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 33

– Using algorithms for polycyclic groups as implemented in [2], we check
whether k ∈ K. We find that k is indeed an element of K.

- We conclude that σ ∈ G.

As said, the membership problem for rcwa groups cannot be solved by algorithmic
means in general. But this does not mean that basically nothing further can be done if
we have some wild rcwa group and some rcwa permutation to which none of the non-
membership criteria applies.

If σ is an element of G, then this can in principle certainly be verified by finding a
factorization into the stored generators. A naive way of looking for such a factorization
is to compute all products of 1, 2, 3, . . . generators and / or inverses of generators, and to
check whether one of them equals σ.

However this quickly gets infeasible if σ cannot be written as a product of only ‘very
few’ generators, and it is also obvious that non-membership cannot be decided in this way.
Nevertheless, assuming that σ is an element of G, it is possible to speed up the factorization
process considerably.

In our factorization method, we need a method to determine an element of G which
maps a given tuple of distinct integers to a given other such tuple:

Method 9.20 (Group Element Which Maps a Given Tuple to a Given Other Tuple). Let
G = 〈σ1, . . . , σr〉 be an rcwa group. Further let k be a positive integer, and let (n1, . . . , nk)
and (ñ1, . . . , ñk) be k-tuples of pairwise distinct integers. In order to determine an element
σ of G such that (nσ

1 , . . . , nσ
k) = (ñ1, . . . , ñk), we proceed as follows:

(1) Let F = 〈f1, . . . , fr〉 be the free group whose rank is the number of stored gener-
ators of G. Further let GF be the set of generators of F and their inverses, and let
π : F → G, fi 7→ σi denote the natural epimorphism.

(2) Put Ω := {((n1, . . . , nk), 1)} and Ω̃ := {((ñ1, . . . , ñk), 1)}.
The elements of the sets Ω and Ω̃ will always be lists of pairs, each consisting

of a k-tuple of integers and an element of the free group F . In any pair (t, f) ∈ Ω,
the tuple t will be the image of (n1, . . . , nk) under π(f). Similarly, in any pair
(t̃, f̃) ∈ Ω̃ the tuple t̃ will be the image of (ñ1, . . . , ñk) under π(f̃).

(3) Repeat the following until there are pairs (t, f) ∈ Ω and (t̃, f̃) ∈ Ω̃ with t = t̃:
(a) Extend Ω by the set of all pairs which one can get from some pair in Ω by

multiplying the second entry by an element f of GF and taking the image of
the first entry under π(f). Extend Ω̃ in the analogous way.

(b) If there are several pairs in Ω respectively Ω̃ whose first entries coincide,
then in any such instance remove all of them except of one. As remaining
representative choose a pair whose second entry has the smallest word length
in terms of generators of F .

(4) Choose any two pairs (t, f) ∈ Ω and (t̃, f̃) ∈ Ω̃ with t = t̃, and return π(f · f̃−1).
If an expression of the result as a product of generators of G is desired, then return
the list of the images of the letters of the word f · f̃−1 under π as well.

If an element with the desired property exists, then it is found after a finite number of
steps. Otherwise the method runs into an infinite loop. Using words in a free group avoids
lots of potencially time- and memory-consuming multiplications of rcwa permutations.
Method 9.20 can be adapted in a trivial way to work for finite sets instead of tuples.

Now we can describe our factorization method:

34 STEFAN KOHL

Method 9.21 (Factorization of Group Elements into Generators). As always in this section,
let G = 〈σ1, . . . , σr〉 be an rcwa group. Further assume that σ ∈ G. We factor σ into the
generators σ1, . . . , σr as follows:

(1) Put k := 1.
(2) By Method 9.20, compute some σ̃ ∈ G such that (1σ̃, . . . , kσ̃) = (1σ, . . . , kσ).

This method can also express the returned element σ̃ as a product of generators
of G. Let l be the list of these factors.

(3) If σ̃ = σ, then return l. Otherwise put k := k + 1, and go to Step (2).

The runtime and memory requirements of Method 9.20 and 9.21 are exponential in the
word length. They are practical for word lengths of, say, at most 20 or 30. The following
example still needs less than a second in RCWA [9]:

Example 9.22. Let G := 〈α, ν〉 be the group generated by the Collatz permutation α and
the class shift ν : n 7→ n+1. Further let σ := ν0(2) ·ν−1

1(2). We factor σ into the generators
of G as described in Method 9.21:

- For k = 1, we obtain σ̃ = ν−2 6= σ.
- For k = 2, we obtain σ̃ = α−1 · ν−1 · α−1 · ν · α−1 · ν−2 6= σ.
- For k = 3, we obtain the same as for k = 2.
- For k = 4, we obtain σ̃ = α−1 · ν−1 · α · ν−1 · α · ν−1 · α · ν2 · α−1 6= σ.
- For k = 5, we obtain the same as for k = 4.
- For k = 6, we obtain σ̃ = α−1 · ν−1 · α3 · ν−1 · α−1 · ν−1 · α−1 · ν2 · α−1 6= σ.
- For k = 7, we obtain σ̃ = α−1 · ν−1 · α · ν−2 · α−1 · ν−1 · α · ν4 = σ.

For k = 7 we obtain equality, and thus get the desired (shortest possible!) factorization.

10. TESTING FOR TRANSITIVITY

In this section, we describe methods to check whether a given rcwa group acts transi-
tively on Z or on a given union of finitely many residue classes.

Method 10.1 (Testing an rcwa Group for Transitivity). Let G be an rcwa group, and let
S ⊆ Z be a nonempty union of finitely many residue classes on which G acts. To check
whether the action of G on S is transitive, we proceed as follows:

(1) By Algorithm 4.6, compute the support of G. If S is not either a subset of or equal
to the support of G, then return false.

(2) Look for finite orbits. For this, choose some bounds b1 and b2. Then compute all
finite orbits which intersect nontrivially with the intersection of {−b1, . . . , b1} and
S, and whose cardinality is at most b2. If finite orbits are found, then return false.

(3) By Method 7.5, compute the order of G. If G is finite, then return false.
(4) Search for an element σ ∈ G and a residue class r(m) ⊆ S such that the restric-

tion of σ to r(m) is given by n 7→ n ± m. For this, loop over the generators
of G, the commutators of generators of G, powers of generators of G, powers of
commutators of generators of G and products of 2, 3, 4, . . . generators of G. For
any element σ encountered along the way, do the following:
(a) Put m̃ := Mod(σ), and assume that σ is represented by the reduced coeffi-

cient list (ar(m̃), br(m̃), cr(m̃))r(m̃)∈Z/m̃Z.
(b) Look for residues r such that ar(m̃) = cr(m̃) = 1 and m̃|br(m̃). For any

such r, put m := br(m̃) and check whether the residue class r(m) is a sub-
set of S. If this is the case for some r, then σ and r(m) satisfy the above
conditions.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 35

This search will often be unsuccessful even if the action of G on S is indeed
transitive, as there is no guarantee that the group G has a suitable element. If the
search was successful, then the cyclic group generated by σ acts transitively on
the residue class r(m). If it was unsuccessful, then give up.

(5) Put S̃ := r(m).
(6) For all generators σi of G, put S̃ := S̃∪ S̃σi . Repeat this until S̃ remains constant.

This may be an infinite loop.
(7) If S̃ = S, then return true. Otherwise return false.

Example 10.2. Let G be the group from Example 6.11. We check whether the action of G
on Z is transitive:

- We check whether the support of G is equal to Z (it is), and whether we find any
finite orbits (we do not).

- We compute the order of G, and obtain |G| =∞. Thus we still cannot answer our
question.

- We find that [g, h]|2(6) = ν−1
2(6), and put S̃ := 2(6).

- We unite the set S̃ with its images under the generators g and h of G, and obtain
S̃ = 1(3)∪2(6). We do this for a second time, and obtain S̃ = Z. This establishes
the transitivity of the action of G on Z.

Next we describe a method to determine the degree of transitivity of the action of an
rcwa group on a union of residue classes, or on the set of positive integers in a union of
residue classes. This method usually needs frequent human interaction in order to avoid
coefficient explosion, huge memory requirements and infinite loops wherever one finds a
way to circumvent these evils at all. For this reason, the description of the method is less
explicit than the other method descriptions in this article. First we need to introduce the
following terms:

Definition 10.3. Let f be an rcwa mapping, and let m denote its modulus. Assume that the
mapping f is represented by the reduced coefficient list (ar(m), br(m), cr(m))r(m)∈Z/mZ.

We call the union of the residue classes (mod m) for which cr(m) > ar(m) the set on
which f is decreasing, and use the notation d(f).

Further we call the union of the residue classes (mod m) for which ar(m) = cr(m) = 1
and br(m) < 0 the set on which f shifts down, and we call the union of those residue classes
(mod m) for which ar(m) = cr(m) = 1 and br(m) > 0 the set on which f shifts up. For
these sets, we use the notations sd(f) and su(f), respectively.

We define the maximal shift of f by max{|b0(m)|, . . . , |bm−1(m)|}.

Method 10.4 (Outline: Degree of Transitivity of an rcwa Group). Let G be an rcwa group,
and let S ⊆ Z be a union of finitely many residue classes which G acts on. We attempt to
determine the degree of transitivity of the action of G on S (or on S ∩ N0) as follows:

(1) If S 6= Z, then proceed as follows:
(a) By Algorithm 4.7, restrict G to the set S.
(b) Find an injective rcwa mapping f whose image is S. For this, determine

partitions of Z and S into the same number of residue classes, and construct
an rcwa mapping which maps the one to the other class-by-class.

(c) By Algorithm 5.6, compute the image of G under the induction epimorphism
π̃f associated with f , and put G := π̃f (G).

Now we are in the situation that we want to determine the degree of transitivity of
the action of G on either Z or N0.

36 STEFAN KOHL

(2) Put F := ∅ and d := 0.
(3) Determine a set D of elements of the pointwise stabilizer GF of F in G such that

- ∪σ∈D(d(σ) ∪ sd(σ)) = Z, if we want to compute the degree of transitivity
of the action of G on N0, and that in addition

- ∪σ∈D(d(σ) ∪ su(σ)) = Z, if we want to compute the degree of transitivity
of the action of G on Z.

This can be done by looping over short products of generators of G, leaving out
some ‘nasty’ ones with large modulus or so. If this fails, then go to Step (6).

(4) Let b be the maximum of the maximal shifts of the rcwa permutations in D, and
put S0 := {−b, . . . , b} \ F or S0 := {0, . . . , b} \ F , depending on whether we
want to determine the degree of transitivity of G on Z or on N0.

(5) Check whether all integers in the set S0 belong to the same orbit under the action
of GF . If this is the case, then put F := F ∪ {d} and d := d + 1, and go to
Step (3). If this is not the case, one could return d; however, verifying this tends
to be infeasible with presently available methods.

(6) Now the goal is to verify that G is not d+1-transitive. For this, look for a positive
integer m such that the action of G is not transitive on d + 1-tuples (mod m). If
such an m is found, then return d. Otherwise return ‘at least d’.

Examples for the use of Method 10.4 can be found in the manual of the GAP [3] pack-
age RCWA [9]. In one of these examples, it is described how to find out that the group
G := 〈ν, τ1(2),0(4)〉 acts 3-transitively, but not 4-transitively on Z.

11. ACKNOWLEDGEMENT

I thank Edmund F. Robertson for proofreading.

REFERENCES

1. Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, 2000. MR 1786869
(2001i:20081)

2. Bettina Eick and Werner Nickel, Polycyclic – Computation with polycyclic groups; Version 2.2, 2007, refer-
eed GAP package, published at http://www.gap-system.org/Packages/polycyclic.html.

3. The GAP Group, GAP – Groups, Algorithms, and Programming; Version 4.4.10, 2007, http://www.gap-
system.org.

4. Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien, Handbook of computational group theory, Dis-
crete Mathematics and its Applications (Boca Raton), Chapman & Hall / CRC, Boca Raton, FL, 2005.
MR 2129747 (2006f:20001)

5. Timothy P. Keller, Finite cycles of certain periodically linear permutations, Missouri J. Math. Sci. 11 (1999),
no. 3, 152–157.

6. Stefan Kohl, Restklassenweise affine Gruppen, Dissertation, Universität Stuttgart, 2005, published at
http://deposit.d-nb.de/cgi-bin/dokserv?idn=977164071.

7. , Graph theoretical criteria for the wildness of residue-class-wise affine permutations, 2006, preprint
(short note), available at http://www.cip.mathematik.uni-stuttgart.de/˜kohlsn/preprints/graphcrit.pdf.

8. , A simple group generated by involutions interchanging residue classes of the integers, 2006,
preprint, available at http://www.cip.mathematik.uni-stuttgart.de/˜kohlsn/preprints/simplegp.pdf.

9. , RCWA - Residue-Class-Wise Affine Groups; Version 2.5.4, 2007, refereed GAP package, published
at http://www.gap-system.org/Packages/rcwa.html.

10. , Wildness of iteration of certain residue-class-wise affine mappings, Adv. in Appl. Math. 39 (2007),
no. 3, 322–328. MR 2352043

11. Jeffrey C. Lagarias, The 3x+1 problem: An annotated bibliography, 2007, arxiv.org/abs/math.NT/0309224.
12. Günther J. Wirsching, The dynamical system generated by the 3n+1 function, Lecture Notes in Mathematics,

no. 1681, Springer-Verlag, 1998.

ALGORITHMS FOR A CLASS OF INFINITE PERMUTATION GROUPS 37

INSTITUT FÜR GEOMETRIE UND TOPOLOGIE, PFAFFENWALDRING 57, UNIVERSITÄT STUTTGART

70550 STUTTGART, GERMANY

E-mail address: kohl@mathematik.uni-stuttgart.de

