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ABSTRACT. We present a series of countable simple groups generated by involutions in-
terchanging disjoint residue classes modulo lattices in Zd (d ∈ N).

1. INTRODUCTION

In this paper we generalize the construction of the simple group CT(Z) < Sym(Z)
investigated in [1] to groups CT(Zd) acting on Zd (d ∈ N).

Definition 1.1. Let d ∈ N, and let L1, L2 ∈ Zd×d be matrices of full rank which are in
Hermite normal form. Further let r1 +ZdL1 and r2 +ZdL2 be disjoint residue classes, and
assume that the representatives r1 and r2 are reduced modulo ZdL1 and ZdL2, respectively.
Then we define the class transposition τr1+ZdL1,r2+ZdL2 ∈ Sym(Zd) as the involution
which interchanges r1 + kL1 and r2 + kL2 for all k ∈ Zd and which fixes everything else.

Definition 1.2. Let CT(Zd) denote the group which is generated by the set of all class
transpositions of Zd.

The purpose of this article is to prove the following generalization of Theorem 3.4 in [1]:

Theorem 1.3. The groups CT(Zd) are simple.

The work which led to the discovery of the simple group CT(Z) was originally moti-
vated by Lothar Collatz’ 3n+1 conjecture, which dates back to the 1930’s. This conjecture
asserts that iterated application of the so-called Collatz mapping

T : Z −→ Z, n 7−→

{
n/2 if n is even,
(3n+ 1)/2 if n is odd

to any positive integer yields 1 after a finite number of steps. The 3n+ 1 conjecture is still
open today. Lagarias [3] has compiled a comprehensive annotated bibliography, which
lists hundreds of publications related to this conjecture. A survey article and a monograph
on Collatz’ conjecture are [2] and [4], respectively.

The elements of the group CT(Z) are bijective mappings which are ‘similar to T ’ in the
sense that they are affine on residue classes as well. If one investigates the group CT(Z)
by means of theory or by means of computation, it turns out that its subgroups and its
elements can often be handled much more easily than T . So it seems conceivable that part
of the problem is that Collatz’ mapping T is not injective.
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However, a key observation is now that the mapping T can be extended in natural ways
to permutations of Z2. An example of such an extension is

σT ∈ Sym(Z2) : (n,m) 7−→


((3n+ 1)/2, 2m+ 1) if n is odd,
(n/2, 2m) if n ≡ 4 mod 6,
(n/2,m) otherwise.

The permutation σT acts on the first coordinate like the Collatz mapping T . This motivates
a move from Z to Z2, and generalizing further, to Zd for d ∈ N.

2. BASIC TERMS

In order to prove the simplicity of CT(Zd), we need to introduce some terms:

Definition 2.1. Let d ∈ N. We call a mapping f : Zd → Zd residue-class-wise affine
if there is a lattice L = ZdM where M ∈ Zd×d is a matrix of full rank, such that the
restrictions of f to the residue classes r+L ∈ Zd/L are all affine. This means that for any
residue class r + L ∈ Zd/L, there is a matrix Ar+L ∈ Zd×d, a vector br+L ∈ Zd and a
positive integer cr+L such that the restriction of f to r + L is given by

f |r+L : r + L −→ Zd, v 7−→ v ·Ar+L + br+L
cr+L

.

For reasons of uniqueness, we assume that L is chosen maximal with respect to inclusion,
and that no prime factor of cr+L divides all coefficients of Ar+L and br+L. We call the
lattice L the modulus of f , written Mod(f). Further we define the prime set of f as the
set of all primes which divide the determinant of at least one of the coefficients Ar+L or
which divide the determinant of M , and we call the mapping f class-wise translating if all
coefficients Ar+L are identity matrices and all coefficients cr+L are equal to 1.

For the sake of simplicity, we identify a lattice L with the Hermite normal form of the
matrix by whose rows it is spanned, and denote the i-th row of the spanning matrix by L(i).

It is easy to see that the residue-class-wise affine permutations of Zd form a countable
supergroup of CT(Zd).

Definition 2.2. We denote the group which is formed by all residue-class-wise affine per-
mutations of Zd by RCWA(Zd), and call its subgroups residue-class-wise affine groups.

A more or less immediate observation is the following:

Theorem 2.3. The groups CT(Zd) and RCWA(Zd) are not finitely generated.

Proof. It is easy to see that the prime set of a product of residue-class-wise affine permuta-
tions is a subset of the union of the prime sets of the factors, and that inversion leaves
the prime set invariant. Therefore as there are infinitely many primes and as for any
prime p there is a class transposition τ(1,0,...,0)+Zd·diag(2,1,...,1),(0,0,...,0)+Zd·diag(2p,1,...,1)

whose prime set is {2, p}, the assertion follows. �

3. THE SIMPLICITY OF CT(Zd)

In order to show that the groups CT(Zd) are simple, we need some lemmata:

Lemma 3.1. Given any two class transpositions τr1+L1,r2+L2 and τr3+L3,r4+L4 whose
support is not all of Zd, there is always a product π of 6 class transpositions such that
τπr1+L1,r2+L2

= τr3+L3,r4+L4 .
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Proof. Let r5 + L5, r6 + L6 ⊂ Zd \ (r1 + L1 ∪ r2 + L2) be disjoint residue classes such
that ∪6

i=3ri + Li 6= Zd, and let r7 + L7, r8 + L8 ⊂ Zd \ ∪6
i=3ri + Li be disjoint residue

classes. Then the following hold:
(1) τr1+L1,r2+L2

τr1+L1,r5+L5 · τr2+L2,r6+L6 = τr5+L5,r6+L6 ,
(2) τr5+L5,r6+L6

τr5+L5,r7+L7 · τr6+L6,r8+L8 = τr7+L7,r8+L8 ,
(3) τr7+L7,r8+L8

τr3+L3,r7+L7 · τr4+L4,r8+L8 = τr3+L3,r4+L4 .
The assertion follows. �

Lemma 3.2. Let σ, υ ∈ RCWA(Zd), and put L := Mod(σ). If the mapping υ is class-
wise translating and fixes all residue classes (mod L) setwise, then the commutator [σ, υ]
is class-wise translating as well.

Proof. Since υ fixes all residue classes (mod L), an affine partial mapping α of [σ, υ] is
given by αασυ−1 · αυ for certain affine partial mappings ασ , αυ and αυ−1 of σ, υ and υ−1,
respectively. The assertion follows, since the translations form a normal subgroup of the
affine group of Qd. �

Lemma 3.3. Let G be a subgroup of RCWA(Zd) which contains CT(Zd). Then any
nontrivial normal subgroup N �G has a class-wise translating element ι 6= 1.

Proof. Let σ ∈ N \{1}, and put L := Mod(σ). Without loss of generality, we can assume
that σ is not class-wise translating. We pick a residue class r + L such that σ|r+L is not a
translation. By Lemma 3.2, the mappings ιi,j,k := [σ, τr+iL(j)+2kL,r+(i+k)L(j)+2kL] ∈ N
(k ∈ N, i ∈ {0, . . . , k − 1}, j ∈ {1, . . . , d}) are class-wise translating. Choose k
sufficiently large; then σ does not map all residue classes r + iL(j) + kL to themselves.
Therefore not all ιi,j,k are equal to 1. �

Now we can prove our theorem:

Theorem 3.4. The groups CT(Zd) are simple.

Proof. Let d ∈ N, and letN be a nontrivial normal subgroup of CT(Zd). We have to show
that N contains all class transpositions.

By Lemma 3.1, all class transpositions whose support is not all of Zd are conjugate in
CT(Zd). Further, any class transposition can be written as a product of two class trans-
positions with disjoint supports: putting D := diag(1, . . . , 1, 2), we have τr1+L1,r2+L2 =
τr1+DL1,r2+DL2 · τr1+(L1)(d)+DL1,r2+(L2)(d)+DL2 . Therefore it is already sufficient to
show that N contains one class transposition whose support is a proper subset of Zd.

By Lemma 3.3, the normal subgroup N has a class-wise translating element ι1 6= 1.
Let L be a sublattice of the modulus of ι1 such that |Z/L| > 3, and choose a residue class
r + L which is moved by ι1. Then put L̃ := DL and

ι2 := τr+L̃,r+L(d)+L̃
· τ(r+L̃)ι1 ,(r+L(d)+L̃)ι1 = [τr+L̃,r+L(d)+L̃

, ι1] ∈ N.

By the choice of L, we can now choose two distinct residue classes r1 + L̃ and r2 + L̃ in
the complement of the support of ι2. Putting L̂ := D2L, we have now

τr1+L̃,r2+L̃ = ι
τr+L̃,r1+L̂·τr+L(d)+L̃,r2+L̂

2

· ι
τr+L̃,r1+2L(d)+L̂

·τr+L(d)+L̃,r2+2L(d)+L̂

2 ∈ N,

which completes the proof of the theorem. �

There is a straightforward generalization of Definition 3.6 and Corollary 3.7 in [1]:
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Definition 3.5. Given a set P of odd primes, let CTP(Zd) 6 CT(Zd) denote the subgroup
which is generated by all class transpositions whose prime sets are subsets of P ∪ {2}.

Corollary 3.6. The groups CTP(Zd) are simple.

Proof. All of our arguments in this section apply to the groups CTP(Zd) as well. – In the
proof of Lemma 3.1, we can choose the four residue classes r5 +L5, . . . , r8 +L8 in such a
way that all prime factors of the determinants of their moduli already divide the determinant
of one of L1, . . . , L4. The proofs of Lemma 3.2, Lemma 3.3 and Theorem 3.4 likewise
do not require the presence of class transpositions whose moduli have determinants with
certain odd factors. �

4. OPEN QUESTIONS

It is not clear whether (CT(Zd))d∈N is indeed a series of pairwise non-isomorphic
groups. Furthermore, so far there is no answer to the following question:

Question 4.1. Are the groups CT(Zd) all isomorphic to CT(Z)?

Also, so far there is no explicit characterization of the elements of CT(Zd):

Question 4.2. How can it be decided whether a given element σ ∈ RCWA(Zd) lies in the
group CT(Zd)?
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