SIMPLE GROUPS THE DERIVED SUBGROUPS OF ALL OF WHOSE SUBGROUPS ARE TI-SUBGROUPS

LEYLI JAFARI TAGHVASANI AND STEFAN KOHL

l.jafari@sci.uok.ac.ir, sk239@st-andrews.ac.uk

Abstract

We show that a non-abelian finite simple group the derived subgroups of all of its subgroups are TI-subgroups is isomorphic to either $\operatorname{PSL}\left(2,2^{p}\right)$ for some prime p, to $\operatorname{PSL}(2,7)$ or to the Suzuki group $\mathrm{Sz}(8)$.

1. Introduction

Recall that a group is said to be a Dedekind group if all of its subgroups are normal. As already Dedekind [4] himself has found, there are not many possibilities for the structure of such group. Therefore it is natural to weaken the condition of all subgroups being normal a bit, and to see whether one can still obtain a classification of the groups which satisfy such weakened condition.

An example of a property of a subgroup which is weaker than normality is that of being a TI-subgroup. - Recall that a subgroup is said to be a TI-subgroup if its distinct conjugates have pairwise trivial intersection. The groups all of whose subgroups are TI-subgroups can still be classified - cf. Walls [15].

Now it seems natural to further weaken the condition to a certain extent, and to classify groups a certain subset of whose subgroups are TI-subgroups. One result in this spirit is the classification of finite groups all of whose abelian subgroups are TI-subgroups obtained by Guo et al. [6]. Another is the description of the structure of the nonnilpotent groups all of whose cyclic subgroups are TI-subgroups obtained by Mousavi et al. [13], and the extension of this work to finite nilpotent groups by Abdollahi and Mousavi [1]. Here we are interested in another set of subgroups to be TI-subgroups:

[^0]Definition 1.1. Let G be a group. We call a subgroup of G a $D T I-$ subgroup if its derived subgroup is a TI-subgroup. Further, we call the group G a DTI-group if all of its subgroups are DTI-subgroups.

In this paper, using the CFSG we classify the finite simple DTIgroups. Our main result is the following:

Theorem 1.2. Up to isomorphism, the non-abelian finite simple DTIgroups are precisely the following:
(1) $\operatorname{PSL}\left(2,2^{p}\right)$ for some prime number p;
(2) $\operatorname{PSL}(2,7)$;
(3) $\mathrm{Sz}(8)$.

2. Preliminaries

For the obvious reasons, a subgroup whose derived subgroup has prime order is always a DTI-subgroup. Basic examples of DTI-groups are e.g. the dihedral groups, which even normalize the derived subgroups of all of their subgroups. A slightly more elaborate example is the following:

Example 2.1. The alternating group A_{5} is a DTI-group. - Up to isomorphism, there are four non-trivial groups which occur as derived subgroups of subgroups of A_{5}, namely A_{5}, C_{5}, C_{3} and V_{4}. Since A_{5} normalizes itself and since subgroups of prime order are always TIsubgroups, it suffices to convince oneself that the conjugates of V_{4} in A_{5} have pairwise trivial intersection. - Note however that not all subgroups of A_{5} are TI-subgroups. So for example any two distinct conjugates of $\mathrm{A}_{4}<\mathrm{A}_{5}$ intersect in a cyclic group of order 3 .

Lemma 2.2. The following hold:
(1) A perfect subgroup is a DTI-subgroup if and only if it is a TIsubgroup.
(2) Every subgroup of a DTI-group is a DTI-group.

Proof. Immediate.
Lemma 2.3. Characteristic subgroups of TI-subgroups are TI-subgroups as well.

Proof. Let G be a group, and assume that H is a TI-subgroup of G and that K is a characteristic subgroup of H. Let $g \in G$. In case $H \cap H^{g}=1$ we also have $K \cap K^{g}=1$. Otherwise it is $H \cap H^{g}=H$, and the inner automorphism of H induced by conjugation with g fixes K - i.e. we have $K \cap K^{g}=K$.

Lemma 2.4. Let G be a non-abelian finite simple DTI-group, and let $M<G$ be a maximal subgroup. Then M is not simple, and we have $\mathrm{N}_{G}\left(M^{\prime}\right)=M$.

Proof. Put $X:=\left\{H^{\prime} \mid H<G\right\}$. First we show that for every $H^{\prime} \in X$ we have $H^{\prime} \lesseqgtr \mathrm{N}_{G}\left(H^{\prime}\right)$. Clearly $\{1, G\} \subset X$, and X has at least three elements - for if $X=\{1, G\}$, then all proper subgroups of G are abelian and by [12], G is solvable, which contradicts our assumptions. If there exists $1 \neq H^{\prime} \in X$ such that for every $g \in G \backslash H^{\prime}$ we have $H^{\prime} \cap H^{\prime g}=1$, then G is a Frobenius group with complement H^{\prime} - which contradicts the assumed simplicity of G. Hence for every $1 \neq H^{\prime} \in X$ there exists $g \in G \backslash H^{\prime}$ such that $H^{\prime} \cap H^{\prime g} \neq$ 1, i.e. $H^{\prime} \cap H^{\prime g}=H^{\prime}$. But this means that $g \in \mathrm{~N}_{G}\left(H^{\prime}\right) \backslash H^{\prime}$, and therefore $H^{\prime} \leq \mathrm{N}_{G}\left(H^{\prime}\right)$.

On the other hand $M^{\prime} \neq 1$, since every finite group having an abelian maximal subgroup is solvable (see e.g. [7]). Now assuming $M=M^{\prime}$ we would have $M^{\prime}=M \lesseqgtr \mathrm{~N}_{G}\left(M^{\prime}\right)$, and by maximality of M it would follow $\mathrm{N}_{G}\left(M^{\prime}\right)=G$ - which is impossible, since G is simple. Therefore it follows that $1<M^{\prime}<M$, and that M is not simple.

By Lemma 2.4, one way to disprove a non-abelian simple group to be a DTI-group is to find a maximal subgroup which is simple.

On the other hand, by Lemma 2.2, a group which has a non-DTIsubgroup cannot be a DTI-group itself. By [2] every non-abelian simple group has a minimal simple subgroup, so our starting point here are the minimal simple groups. The latter are the non-abelian simple groups all of whose proper subgroups are solvable, or equivalently the non-abelian simple groups which no other non-abelian simple group embeds into. Thompson [14] determined all minimal simple groups:

Theorem 2.5. The minimal simple groups are as follows:
(1) $\operatorname{PSL}\left(2,2^{p}\right)$ for a prime p.
(2) $\operatorname{PSL}\left(2,3^{p}\right)$ for an odd prime p.
(3) $\operatorname{PSL}(2, p)$ for a prime $p>3$ with $p^{2}+1$ divisible by 5 .
(4) $\operatorname{PSL}(3,3)$.
(5) $\mathrm{Sz}\left(2^{p}\right)$ for an odd prime p.

3. The projective special linear groups PSL $(2, q)$

In this section we prove that the projective special linear group $\operatorname{PSL}(2, q)$ is a DTI-group if and only if $q=2^{r}$ where r is a prime number or $q=7$. For this purpose, we need some properties of $\operatorname{PSL}(2, q)$ which we repeat here. These facts can be found in [9].

The group PSL $(2, q)$ acts doubly transitively on the projective line $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$. By using this action, the following result can be proved.

Lemma 3.1. Let $q=p^{n}$ be a prime power. Then the following hold:
(1) The Sylow p-subgroups of $\operatorname{PSL}(2, q)$ are TI-subgroups.
(2) The cyclic subgroups of $\operatorname{PSL}(2, q), q \neq 2$ having order prime to p are TI-subgroups

The subgroups of PSL $(2, q)$ are known by a Theorem of Dickson [5]. A complete list of subgroups of $\operatorname{PSL}(2, q)$ is as follows:

Theorem 3.2. Let $q:=p^{n}$ where p is a prime and $n \in \mathbb{N}$. Up to isomorphism, a complete list of subgroups of $\operatorname{PSL}(2, q)$ is as follows:
(1) Elementary abelian p-groups.
(2) Cyclic groups of order d, where $d \mid(q \pm 1) / \operatorname{gcd}(q-1,2)$.
(3) Dihedral groups of order $2 d$, with d as in (2).
(4) Symmetric groups S_{4} if $16 \mid q^{2}-1$.
(5) Alternating groups A_{5} if $5 \mid q^{2}-1$ or $p=5$.
(6) Alternating groups A_{4} if $p>2$ or $p=2$ and $2 \mid n$.
(7) Semidirect products $\mathrm{C}_{p}^{m} \rtimes \mathrm{C}_{t}$ of elementary abelian groups of order $p^{m}(m \leq n)$ with cyclic groups of order t, where t divides $p^{m}-1$ as well as $p^{n}-1$.
(8) Groups PSL($2, p^{m}$) for divisors m of n, and $\operatorname{PGL}\left(2, p^{m}\right)$ for divisors m of $n / 2$ in case n is even.
(9) Subgroups of the above groups.

From Theorem 3.2, we immediately obtain:
Lemma 3.3. Let $q:=p^{r}$ where p and r are prime numbers. Then up to isomorphism the derived subgroups of subgroups of $\operatorname{PSL}(2, q)$ are as follows:
(1) Cyclic groups of order d, where $d \mid(q \pm 1) / \operatorname{gcd}(q-1,2)$.
(2) Alternating groups A_{4}, provided that $16 \mid q^{2}-1$.
(3) Elementary abelian groups C_{p}^{n} for some $n \in \mathbb{N}$.
(4) The Klein four group V_{4}, if $p>2$ or $p=2$ and $r=2$ (note that in the latter case, $q=4$ and $G \cong \mathrm{~A}_{5}$).

By Lemma 3.1, the subgroups of Type (1) in Lemma 3.3 are TIsubgroups of PSL $(2, q)$. In the sequel, we need the following elementary lemma:

Lemma 3.4. Let a and b be positive integers, and put $c:=\operatorname{gcd}(a, b)$. Then the following hold:
(1) $\operatorname{gcd}\left(2^{a}+1,2^{b}+1\right)=2^{c}+1$ if a / c and b / c are both odd, and 1 otherwise;
(2) $\operatorname{gcd}\left(2^{a}+1,2^{b}-1\right)=2^{c}+1$ if a / c is odd and b / c is even, and 1 otherwise;
(3) $\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)=2^{c}-1$.

Proof. Immediate.
Lemma 3.5. Put $G:=\operatorname{PSL}\left(2,2^{r}\right), r \in \mathbb{N}$. Then G is a DTI-Group if and only if r is a prime number.

Proof. First assume that r is composite. Let s be a prime divisor of r. Then G has a subgroup isomorphic to $\operatorname{PSL}\left(2,2^{r / s}\right)$, which is maximal by Theorem 3.2. Hence in this case G has a maximal subgroup which is simple, and is therefore not a DTI-group by Lemma 2.4.

Now assume that r is prime. Clearly $16 \nmid\left(2^{r}\right)^{2}-1$, so G has no subgroup whose derived subgroup is of Type (2) of Lemma 3.3. Also the derived subgroups of the groups of Type (3) in Theorem 3.2 are TI-subgroups of G. So it is enough to show that elementary abelian subgroups $\mathrm{C}_{2}^{n}, n \in \mathbb{N}$, are TI-subgroups of G.

The Sylow 2-subgroups of G are elementary abelian of order 2^{r}. Let P be a Sylow 2-subgroup of G. Then the normalizer $\mathrm{N}_{G}(P)$ acts transitively on $P \backslash\{1\}$ by conjugation. Thus if $Q<P$ is a subgroup of order 2^{n}, then Q can only be a TI-subgroup if $2^{n}-1$ divides $2^{r}-1$. Since r is prime, this only holds for $n=1$ and $n=r$. On the other hand, for any $1<n<r$ we have $\operatorname{gcd}\left(2^{n}-1,2^{r}-1\right)=1$, so G has no subgroup of type $\mathrm{C}_{2}^{n} \rtimes \mathrm{C}_{t}$. Thus, the cyclic subgroups of order 2 and the Sylow 2 -subgroups are the only elementary abelian 2 -subgroups of G which occur as derived subgroups of suitable subgroups of G.

Conversely since $\operatorname{gcd}\left(2^{n}-1,2^{r}-1\right)=1$ for every $n<r$, the only subgroups of Type (7) of Theorem 3.2 are subgroups $\mathrm{C}_{2}^{r} \rtimes \mathrm{C}_{t}$, where $t \mid 2^{r}-1$. In fact, C_{2}^{r} is a Sylow 2-subgroup of G. Therefore by Lemma 3.1 it is a TI-subgroup of G.

Lemma 3.6. Put $G:=\operatorname{PSL}(2, q)$ for some prime power q satisfying $16 \mid q^{2}-1$. Then G is a DTI-group if and only if $q=7$.

Proof. Let q be a prime power such that $16 \mid q^{2}-1$, and assume that $G:=\operatorname{PSL}(2, q)$ is a DTI-group. By [5], the normalizer in G of every subgroup of G which is isomorphic to A_{4} is isomorphic to S_{4}, and every subgroup of A_{4} of order 3 is self-normalizing. Also A_{4} has 4 maximal subgroups of order 3 , all conjugate. The key is to count the subgroups of G isomorphic to A_{4} which contain a given cyclic subgroup C_{3} of order 3. - We have $\mathrm{N}_{G}\left(\mathrm{C}_{3}\right) \cong \mathrm{D}_{q-1}$ if $3 \mid q-1$, and $\mathrm{N}_{G}\left(\mathrm{C}_{3}\right) \cong \mathrm{D}_{q+1}$ if $3 \mid q+1-$ where D_{q+1} and D_{q-1} denote the dihedral groups of orders $q+1$ and $q-1$, respectively. Thus in case $3 \mid q-1$, the number of
subgroups of G isomorphic to A_{4} which contain C_{3} is equal to

$$
\frac{|\operatorname{PSL}(2, q)|}{\left|\mathrm{S}_{4}\right|} \times 4 \times \frac{q-1}{|\operatorname{PSL}(2, q)|}=\frac{q-1}{6} .
$$

Similarly, in case $3 \mid q+1$ the number of such subgroups is $(q+1) / 6$. Now since G is a DTI-group, A_{4} must be a TI-subgroup. As G has two conjugacy classes of subgroups isomorphic to A_{4}, this implies that $(q-1) / 6,(q+1) / 6 \in\{1,2\}$, and hence $q \in\{5,7,11,13\}$. Now our initial assumption $16 \mid q^{2}-1$ yields $q=7$. Checking that $\operatorname{PSL}(2,7)$ is indeed a DTI-group completes the proof.

Lemma 3.7. Put $G:=\operatorname{PSL}(2, q)$, where $q=p^{m} \geq 9$ is an odd prime power. If $16 \nmid q^{2}-1$, then G is not a DTI-group.

Proof. By Theorem 3.2, the group G has a subgroup isomorphic to A_{4}. We show that the derived subgroup of the latter, which is isomorphic to V_{4}, is not a DTI-subgroup of G. By [5], G has a single class of $q\left(q^{2}-1\right) / 24$ conjugate subgroups isomorphic to V_{4}. On the other hand, each of these groups has 3 involutions. Now in total, the group G has $q(q+t) / 2$ involutions, where $t \in\{1,-1\}$ and $4 \mid(q-t)$. The assumption that the conjugate copies of V_{4} intersect trivially finally implies that

$$
\frac{3 q\left(q^{2}-1\right)}{24}=\frac{q(q \pm 1)}{2}
$$

hence $\left(q^{2}-1\right) / 4=q \pm 1$, which contradicts our assumption $q \geq 9$.
Corollary 3.8. The minimal simple groups of the form $\operatorname{PSL}\left(2,3^{r}\right)$, where r is a prime, are not DTI-groups.

Corollary 3.9. Let $G:=\operatorname{PSL}(2, q)$ be a minimal simple group. Then G is a DTI-group if and only if $q=2^{r}$ for some prime r or $q=7$.

4. The Suzuki groups

In the following we collect some results on the subgroups of Suzuki groups. The corresponding proofs can be found in [[8], Thm. 3.10 in Ch. XI] and [[10], Thm. 4.12].

Theorem 4.1. Let $G:=\operatorname{Sz}(q)$, where $q=2^{2 m+1}$ for some positive integer m. Then a complete list of the subgroups of G is as follows:
(1) The Hall subgroup $\mathrm{N}_{G}(T)=T H$ which is a Frobenius group of order $q^{2}(q-1)$, where T is a Sylow 2-subgroup of G.
(2) The dihedral group $T_{0}=\mathrm{N}_{G}(H)$ of order $2(q-1)$.
(3) The cyclic Hall subgroups A_{1} and A_{2}, where $\left|A_{1}\right|=2^{2 m+1}+$ $2^{m+1}+1$ and $\left|A_{2}\right|=2^{2 m+1}-2^{m+1}+1$.
(4) The Frobenius subgroups $T_{1}=\mathrm{N}_{G}\left(A_{1}\right)$ and $T_{2}=\mathrm{N}_{G}\left(A_{2}\right)$, where $\left|T_{1}\right|=4\left|A_{1}\right|$ and $\left|T_{2}\right|=4\left|A_{2}\right|$.
(5) The subgroups of the form $\mathrm{Sz}(r)$ where r is an odd power of 2 , $r \geq 8$ and $q=r^{n}$ for some $n \in \mathbb{N}$.
(6) Subgroups (and their conjugates) of the above groups.

Moreover the conjugates of T, H, A_{1} and A_{2} form a partition of G. So they are TI-subgroups of G.

Lemma 4.2. Let p be an odd prime number. Then the Suzuki group $\mathrm{Sz}\left(2^{p}\right)$ is a DTI-group if and only if $p=3$.

Proof. Put $G:=\mathrm{Sz}\left(2^{p}\right)$. By Lemma 2.3 and Theorem 4.1 it suffices to check whether the 2-subgroups which occur as derived subgroups of subgroups of G are TI-subgroups. Suppose that $T \in \operatorname{Syl}_{2}(G)$, and that $Q<T$ is a 2-subgroup which occurs as derived subgroup of a subgroup of G. Assume $|Q|=2^{n}$. Now $\mathrm{N}_{G}(T)$ acts transitively on the set $T \backslash\{1\}$. If Q is a TI-subgroup, then $Q \backslash\{1\}$ is a block under this action, and therefore we have $2^{n}-1| | T \mid-1=2^{2 p}-1=\left(2^{p}-1\right)\left(2^{p}+1\right)$. If $2^{n}-1 \mid 2^{p}-1$, then $n=p$ or $n=1$. If $2^{n}-1 \mid 2^{p}+1$, then by Lemma 3.4 we have $\operatorname{gcd}\left(2^{n}-1,2^{p}+1\right)=3$ if n is even. So $n=1$ or $n=2$. This means that if a 2 -subgroup Q of G is a TI-subgroup, then $|Q| \in\left\{2,4,2^{p}, 2^{2 p}\right\}$. But in case $p>3$, it is known that T always has a 3 -generated subgroup whose derived subgroup is isomorphic to C_{2}^{3}, and which by the above cannot be a TI-subgroup. Finally, it is straightforward to handle the case $p=3$, and to check that the group $G=\mathrm{Sz}(8)$ is indeed a DTI-group.

Lemma 4.3. Let m be an odd composite number. Then the Suzuki group $\mathrm{Sz}\left(2^{m}\right)$ is not a DTI-group.

Proof. Let p be a prime divisor of m. Then by Theorem 4.1, the group $\mathrm{Sz}\left(2^{m}\right)$ contains a maximal subgroup which is isomorphic to the simple group $\mathrm{Sz}\left(2^{m / p}\right)$. Now the assertion follows from Lemma 2.4.

5. The simple groups which are not minimal

In this section we show that the non-minimal simple groups are not DTI-groups. For this purpose, we need the following lemma.

Lemma 5.1. Let q be a prime power. Then $\operatorname{SL}(3, q)$ and $\operatorname{PSL}(3, q)$ are DTI-groups if and only if $q=2$.

Proof. We handle the cases $q=2$ and $q=3$ by means of computation, and assume from now on that $q \geq 4$. Let $G:=\mathrm{SL}(3, q)$, and put

$$
H:=\left\{\left.\left(\begin{array}{c|c}
h & 0 \\
\hline 0 & 1
\end{array}\right) \right\rvert\, h \in \mathrm{SL}(2, q)\right\}<G .
$$

Then $H \cong \mathrm{SL}(2, q)$ is perfect. Now putting

$$
t:=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

we have

$$
H \cap H^{t}=\left\{\left.\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{q}\right\} \cong\left(\mathbb{F}_{q},+\right) \notin\{1, H\}
$$

and therefore H is not a DTI-subgroup, and G is not a DTI-group. Now taking images under the canonical projection modulo the centre of G, all of this argumentation remains intact. - Homomorphic images of perfect groups are still perfect groups, and as the order of the centre is either 1 or 3 (hence in particular smaller than q), the intersection of the conjugates cannot be merged into one equivalence class. The assertion for the groups $\operatorname{PSL}(3, q)$ follows.

Lemma 5.2. Suppose that G is a non-abelian simple group which is not minimal simple. Then G is not a DTI-group.

Proof. We use the classification of finite simple groups, cf. e.g. [3]. First we consider the sporadic simple groups. The table given below shows that every sporadic simple group has a proper non-DTI-subgroup, and that therefore there is no sporadic simple DTI-group:

Group	Non-DTI-subgroup	Group	Non-DTI-subgroup
M_{11}	PSL(2,11)	M_{12}	M_{11}
$\mathrm{~J}_{1}$	PSL $(2,11)$	M_{22}	$\mathrm{~A}_{7}$
$\mathrm{~J}_{2}$	PSU $(3,3)$	M_{23}	M_{11}
${ }^{2} \mathrm{~F}_{4}(2)^{\prime}$	PSL $(2,25)$	HS	M_{22}
$\mathrm{~J}_{3}$	PSL $(2,19)$	M_{24}	M_{23}
McL	M_{22}	He	A_{7}
Ru	A_{8}	Suz_{2}	$\mathrm{~A}_{7}$
$\mathrm{O}^{\prime} \mathrm{N}$	J_{1}	Co_{3}	HS
Co_{2}	McL	Fi_{22}	$\mathrm{~A}_{10}$
HN	A_{12}	Ly	A_{11}
			To be continued.

Continued.						
Group	Non-DTI-subgroup	Group	Non-DTI-subgroup			
Th	PSL $(2,19)$	Fi_{23}	$\mathrm{~A}_{12}$			
Co_{1}	Co_{2}	$\mathrm{~J}_{4}$	$\mathrm{PSL}(2,23)$			
$\mathrm{Fi}_{24}^{\prime}$	Fi_{23}	B	M_{11}			
M	Th					

Now suppose that G is a group of Lie type. If G is a Chevalley group except $\operatorname{PSL}(2, q)$ and $\operatorname{PSp}(4, q)$, then by [2], it has a subgroup isomorphic to either $\operatorname{SL}(3, q)$ or $\operatorname{PSL}(3, q)$. By Lemma 5.1 the latter are not DTI-groups unless $q=2$, and the case $q=2$ can be dealt with in a tedious case-by-case analysis. If $G=\operatorname{PSp}(4, q)$ and q is even, then by [11], it has a maximal subgroup isomorphic to the Suzuki group $\mathrm{Sz}(q)$ - and therefore it is not a DTI-group by Lemma 2.4.

If G is a Steinberg group, then it is of one of the types ${ }^{2} \mathrm{~A}_{n}\left(q^{2}\right)$, $n \geq 2,{ }^{2} \mathrm{D}_{n}\left(q^{2}\right), n \geq 4,{ }^{2} \mathrm{E}_{6}\left(q^{2}\right)$ or ${ }^{3} \mathrm{D}_{4}\left(q^{3}\right)$. Now again by [2], the groups ${ }^{2} \mathrm{D}_{n}\left(q^{2}\right), n \geq 4,{ }^{2} \mathrm{E}_{6}\left(q^{2}\right)$ and ${ }^{3} \mathrm{D}_{4}\left(q^{3}\right)$ have subgroups isomorphic to either $\operatorname{SL}(3, q)$ or $\operatorname{PSL}(3, q)$ - and again by Lemma 5.1 the latter are not DTI-groups unless $q=2$. Also, as above the case $q=2$ can be dealt with in a tedious case-by-case analysis. Further if $n \geq 5$, then ${ }^{2} \mathrm{~A}_{n}\left(q^{2}\right)$ has a proper subgroup isomorphic to either $\operatorname{SL}\left(3, q^{2}\right)$ or $\operatorname{PSL}\left(3, q^{2}\right)$. So we consider the Steinberg groups ${ }^{2} \mathrm{~A}_{n}\left(q^{2}\right)$ for $n \in\{2,3,4\}$. For q odd, the group ${ }^{2} \mathrm{~A}_{n}\left(q^{2}\right)$ has the simple subgroup $\mathrm{P} \Omega_{n}^{+}(q)$, which is not a DTI-group by the previous paragraph. So we may assume that q is a power of 2 . Since the groups ${ }^{2} \mathrm{~A}_{2}\left(q^{2}\right) \cong \operatorname{PSL}(2, q)$ have already been treated before, we may assume that $n \in\{3,4\}$. But then the group ${ }^{2} \mathrm{~A}_{n}\left(q^{2}\right)$ has a subgroup isomorphic to the simple group $\mathrm{SL}\left(2, q^{2}\right)$, hence it is not a DTI-group.

The simple groups of types ${ }^{2} \mathrm{~F}_{4}\left(2^{2 m+1}\right)$ and ${ }^{2} \mathrm{G}_{2}\left(3^{2 n+1}\right)$ have non-DTIsubgroups isomorphic to $\operatorname{PSL}(2,25)$ and $\operatorname{PSL}\left(2,3^{2 n+1}\right)$, respectively. Finally, in Section 4 we have shown that except for $\mathrm{Sz}(8)$ the Suzuki groups are not DTI-groups, and the proof is completed.

References

1. Alireza Abdollahi and Hamid Mousavi, Finite nilpotent groups whose cyclic subgroups are TI-subgroups., Bull. Malays. Math. Sci. Soc. (2) 40 (2017), no. 4, 1577-1589 (English).
2. Michael J. J. Barry and Michael B. Ward, Simple groups contain minimal simple groups., Publ. Mat., Barc. 41 (1997), no. 2, 411-415 (English).
3. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple
groups. With comput. assist. from J. G. Thackray., Oxford: Clarendon Press. XXXIII, 252 p. (1985)., 1985.
4. R. Dedekind, Ueber Gruppen, deren sämtliche Teiler Normalteiler sind., Math. Ann. 48 (1897), 548-561 (German).
5. L. E. Dickson, Linear groups with an exposition of the Galois field theory., Leipzig: B. G. Teubner. X + 312 S. 8°. (Teubners Sammlung No. VI.) (1901)., 1901.
6. Xiuyun Guo, Shirong Li, and Paul Flavell, Finite groups whose Abelian subgroups are TI-subgroups., J. Algebra 307 (2007), no. 2, 565-569 (English).
7. I. N. Herstein, A remark on finite groups., Proc. Am. Math. Soc. 9 (1958), 255-257 (English).
8. B. Huppert and N. Blackburn, Finite groups. III., Grundlehren der Mathematischen Wissenschaften, 243. Berlin-Heidelberg-New York: Springer-Verlag. IX, 454 p. DM 128.00; \$ 59.60 (1982)., 1982.
9. Bertram Huppert, Endliche Gruppen. I., Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. 134. Berlin-Heidelberg-New York: Springer-Verlag. XII, 793 S. mit 15 Abb. (1967)., 1967.
10. Heinz Lüneburg, Die Suzukigruppen und ihre Geometrien. Vorlesung Sommersemester 1965 in Mainz., vol. 10, Springer, Cham, 1965 (German).
11. _ Translation planes., Berlin-Heidelberg-New York: Springer-Verlag. IX, 278 p. DM 54.50; \$ 30.10 (1980)., 1980.
12. G. A. Miller and H. C. Moreno, Non-Abelian groups in which every subgroup is Abelian., Trans. Am. Math. Soc. 4 (1903), 398-404 (English).
13. Hamid Mousavi, Tahereh Rastgoo, and Viktor Zenkov, The structure of nonnilpotent CTI-groups., J. Group Theory 16 (2013), no. 2, 249-261 (English).
14. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable., Bull. Am. Math. Soc. 74 (1968), 383-437 (English).
15. Gary Walls, Trivial intersection groups., Arch. Math. 32 (1979), 1-4 (English).

[^0]: 2010 Mathematics Subject Classification. Primary 20E32; Secondary 20D99.
 Key words and phrases. Finite simple group, TI-subgroup.

