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Abstract. We show that a non-abelian finite simple group the
derived subgroups of all of its subgroups are TI-subgroups is iso-
morphic to either PSL(2, 2p) for some prime p, to PSL(2, 7) or to
the Suzuki group Sz(8).

1. Introduction

Recall that a group is said to be a Dedekind group if all of its sub-
groups are normal. As already Dedekind [4] himself has found, there
are not many possibilities for the structure of such group. Therefore it
is natural to weaken the condition of all subgroups being normal a bit,
and to see whether one can still obtain a classification of the groups
which satisfy such weakened condition.

An example of a property of a subgroup which is weaker than nor-
mality is that of being a TI-subgroup. – Recall that a subgroup is
said to be a TI-subgroup if its distinct conjugates have pairwise trivial
intersection. The groups all of whose subgroups are TI-subgroups can
still be classified – cf. Walls [15].

Now it seems natural to further weaken the condition to a certain
extent, and to classify groups a certain subset of whose subgroups are
TI-subgroups. One result in this spirit is the classification of finite
groups all of whose abelian subgroups are TI-subgroups obtained by
Guo et al. [6]. Another is the description of the structure of the non-
nilpotent groups all of whose cyclic subgroups are TI-subgroups ob-
tained by Mousavi et al. [13], and the extension of this work to finite
nilpotent groups by Abdollahi and Mousavi [1]. Here we are interested
in another set of subgroups to be TI-subgroups:
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Definition 1.1. Let G be a group. We call a subgroup of G a DTI-
subgroup if its derived subgroup is a TI-subgroup. Further, we call the
group G a DTI-group if all of its subgroups are DTI-subgroups.

In this paper, using the CFSG we classify the finite simple DTI-
groups. Our main result is the following:

Theorem 1.2. Up to isomorphism, the non-abelian finite simple DTI-
groups are precisely the following:

(1) PSL(2, 2p) for some prime number p;
(2) PSL(2, 7);
(3) Sz(8).

2. Preliminaries

For the obvious reasons, a subgroup whose derived subgroup has
prime order is always a DTI-subgroup. Basic examples of DTI-groups
are e.g. the dihedral groups, which even normalize the derived sub-
groups of all of their subgroups. A slightly more elaborate example is
the following:

Example 2.1. The alternating group A5 is a DTI-group. – Up to
isomorphism, there are four non-trivial groups which occur as derived
subgroups of subgroups of A5, namely A5, C5, C3 and V4. Since A5

normalizes itself and since subgroups of prime order are always TI-
subgroups, it suffices to convince oneself that the conjugates of V4

in A5 have pairwise trivial intersection. – Note however that not all
subgroups of A5 are TI-subgroups. So for example any two distinct
conjugates of A4 < A5 intersect in a cyclic group of order 3.

Lemma 2.2. The following hold:

(1) A perfect subgroup is a DTI-subgroup if and only if it is a TI-
subgroup.

(2) Every subgroup of a DTI-group is a DTI-group.

Proof. Immediate. �

Lemma 2.3. Characteristic subgroups of TI-subgroups are TI-subgroups
as well.

Proof. Let G be a group, and assume that H is a TI-subgroup of G and
that K is a characteristic subgroup of H. Let g ∈ G. In case H∩Hg = 1
we also have K ∩Kg = 1. Otherwise it is H ∩Hg = H, and the inner
automorphism of H induced by conjugation with g fixes K – i.e. we
have K ∩Kg = K. �
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Lemma 2.4. Let G be a non-abelian finite simple DTI-group, and let
M < G be a maximal subgroup. Then M is not simple, and we have
NG(M ′) = M .

Proof. Put X := {H ′ | H < G}. First we show that for every H ′ ∈ X
we have H ′ � NG(H ′). Clearly {1, G} ⊂ X, and X has at least three
elements – for if X = {1, G}, then all proper subgroups of G are abelian
and by [12], G is solvable, which contradicts our assumptions. If there
exists 1 6= H ′ ∈ X such that for every g ∈ G\H ′ we have H ′∩H ′g = 1,
then G is a Frobenius group with complement H ′ – which contradicts
the assumed simplicity of G. Hence for every 1 6= H ′ ∈ X there exists
g ∈ G \H ′ such that H ′ ∩H ′g 6= 1, i.e. H ′ ∩H ′g = H ′. But this means
that g ∈ NG(H ′) \H ′, and therefore H ′ � NG(H ′).

On the other hand M ′ 6= 1, since every finite group having an abelian
maximal subgroup is solvable (see e.g. [7]). Now assuming M = M ′

we would have M ′ = M � NG(M ′), and by maximality of M it would
follow NG(M ′) = G – which is impossible, since G is simple. Therefore
it follows that 1 < M ′ < M , and that M is not simple. �

By Lemma 2.4, one way to disprove a non-abelian simple group to
be a DTI-group is to find a maximal subgroup which is simple.

On the other hand, by Lemma 2.2, a group which has a non-DTI-
subgroup cannot be a DTI-group itself. By [2] every non-abelian simple
group has a minimal simple subgroup, so our starting point here are the
minimal simple groups. The latter are the non-abelian simple groups all
of whose proper subgroups are solvable, or equivalently the non-abelian
simple groups which no other non-abelian simple group embeds into.
Thompson [14] determined all minimal simple groups:

Theorem 2.5. The minimal simple groups are as follows:

(1) PSL(2, 2p) for a prime p.
(2) PSL(2, 3p) for an odd prime p.
(3) PSL(2, p) for a prime p > 3 with p2 + 1 divisible by 5.
(4) PSL(3, 3).
(5) Sz(2p) for an odd prime p.

3. The projective special linear groups PSL(2, q)

In this section we prove that the projective special linear group
PSL(2, q) is a DTI-group if and only if q = 2r where r is a prime num-
ber or q = 7. For this purpose, we need some properties of PSL(2, q)
which we repeat here. These facts can be found in [9].

The group PSL(2, q) acts doubly transitively on the projective line
P1(Fq). By using this action, the following result can be proved.



4 LEYLI JAFARI AND STEFAN KOHL

Lemma 3.1. Let q = pn be a prime power. Then the following hold:

(1) The Sylow p-subgroups of PSL(2, q) are TI-subgroups.
(2) The cyclic subgroups of PSL(2, q), q 6= 2 having order prime

to p are TI-subgroups

The subgroups of PSL(2, q) are known by a Theorem of Dickson [5].
A complete list of subgroups of PSL(2, q) is as follows:

Theorem 3.2. Let q := pn where p is a prime and n ∈ N. Up to
isomorphism, a complete list of subgroups of PSL(2, q) is as follows:

(1) Elementary abelian p-groups.
(2) Cyclic groups of order d, where d | (q ± 1)/ gcd(q − 1, 2).
(3) Dihedral groups of order 2d, with d as in (2).
(4) Symmetric groups S4 if 16 | q2 − 1.
(5) Alternating groups A5 if 5 | q2 − 1 or p = 5.
(6) Alternating groups A4 if p > 2 or p = 2 and 2 | n.
(7) Semidirect products Cm

p oCt of elementary abelian groups of
order pm (m ≤ n) with cyclic groups of order t, where t divides
pm − 1 as well as pn − 1.

(8) Groups PSL(2, pm) for divisors m of n, and PGL(2, pm) for
divisors m of n/2 in case n is even.

(9) Subgroups of the above groups.

From Theorem 3.2, we immediately obtain:

Lemma 3.3. Let q := pr where p and r are prime numbers. Then up
to isomorphism the derived subgroups of subgroups of PSL(2, q) are as
follows:

(1) Cyclic groups of order d, where d | (q ± 1)/ gcd(q − 1, 2).
(2) Alternating groups A4, provided that 16 | q2 − 1.
(3) Elementary abelian groups Cn

p for some n ∈ N.
(4) The Klein four group V4, if p > 2 or p = 2 and r = 2 (note

that in the latter case, q = 4 and G ∼= A5).

By Lemma 3.1, the subgroups of Type (1) in Lemma 3.3 are TI-
subgroups of PSL(2, q). In the sequel, we need the following elementary
lemma:

Lemma 3.4. Let a and b be positive integers, and put c := gcd(a, b).
Then the following hold:

(1) gcd(2a + 1, 2b + 1) = 2c + 1 if a/c and b/c are both odd, and 1
otherwise;

(2) gcd(2a + 1, 2b− 1) = 2c + 1 if a/c is odd and b/c is even, and 1
otherwise;
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(3) gcd(2a − 1, 2b − 1) = 2c − 1.

Proof. Immediate. �

Lemma 3.5. Put G := PSL(2, 2r), r ∈ N. Then G is a DTI-Group if
and only if r is a prime number.

Proof. First assume that r is composite. Let s be a prime divisor of r.
Then G has a subgroup isomorphic to PSL(2, 2r/s), which is maximal
by Theorem 3.2. Hence in this case G has a maximal subgroup which
is simple, and is therefore not a DTI-group by Lemma 2.4.

Now assume that r is prime. Clearly 16 - (2r)2 − 1, so G has no
subgroup whose derived subgroup is of Type (2) of Lemma 3.3. Also
the derived subgroups of the groups of Type (3) in Theorem 3.2 are
TI-subgroups of G. So it is enough to show that elementary abelian
subgroups Cn

2 , n ∈ N, are TI-subgroups of G.
The Sylow 2-subgroups of G are elementary abelian of order 2r. Let

P be a Sylow 2-subgroup of G. Then the normalizer NG(P ) acts tran-
sitively on P \ {1} by conjugation. Thus if Q < P is a subgroup of
order 2n, then Q can only be a TI-subgroup if 2n − 1 divides 2r − 1.
Since r is prime, this only holds for n = 1 and n = r. On the other
hand, for any 1 < n < r we have gcd(2n − 1, 2r − 1) = 1, so G has no
subgroup of type Cn

2 oCt. Thus, the cyclic subgroups of order 2 and
the Sylow 2-subgroups are the only elementary abelian 2-subgroups
of G which occur as derived subgroups of suitable subgroups of G.

Conversely since gcd(2n − 1, 2r − 1) = 1 for every n < r, the only
subgroups of Type (7) of Theorem 3.2 are subgroups Cr

2oCt, where
t | 2r − 1. In fact, Cr

2 is a Sylow 2-subgroup of G. Therefore by
Lemma 3.1 it is a TI-subgroup of G. �

Lemma 3.6. Put G := PSL(2, q) for some prime power q satisfying
16 | q2 − 1. Then G is a DTI-group if and only if q = 7.

Proof. Let q be a prime power such that 16 | q2 − 1, and assume that
G := PSL(2, q) is a DTI-group. By [5], the normalizer in G of every
subgroup of G which is isomorphic to A4 is isomorphic to S4, and every
subgroup of A4 of order 3 is self-normalizing. Also A4 has 4 maximal
subgroups of order 3, all conjugate. The key is to count the subgroups
of G isomorphic to A4 which contain a given cyclic subgroup C3 of
order 3. – We have NG(C3) ∼= Dq−1 if 3 | q − 1, and NG(C3) ∼= Dq+1 if
3 | q + 1 – where Dq+1 and Dq−1 denote the dihedral groups of orders
q + 1 and q − 1, respectively. Thus in case 3 | q − 1, the number of
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subgroups of G isomorphic to A4 which contain C3 is equal to

|PSL(2, q)|
| S4 |

× 4× q − 1

|PSL(2, q)|
=

q − 1

6
.

Similarly, in case 3 | q + 1 the number of such subgroups is (q + 1)/6.
Now since G is a DTI-group, A4 must be a TI-subgroup. As G has
two conjugacy classes of subgroups isomorphic to A4, this implies that
(q − 1)/6, (q + 1)/6 ∈ {1, 2}, and hence q ∈ {5, 7, 11, 13}. Now our
initial assumption 16 | q2 − 1 yields q = 7. Checking that PSL(2, 7) is
indeed a DTI-group completes the proof. �

Lemma 3.7. Put G := PSL(2, q), where q = pm ≥ 9 is an odd prime
power. If 16 - q2 − 1, then G is not a DTI-group.

Proof. By Theorem 3.2, the group G has a subgroup isomorphic to A4.
We show that the derived subgroup of the latter, which is isomorphic
to V4, is not a DTI-subgroup of G. By [5], G has a single class of
q(q2 − 1)/24 conjugate subgroups isomorphic to V4. On the other
hand, each of these groups has 3 involutions. Now in total, the group
G has q(q + t)/2 involutions, where t ∈ {1,−1} and 4 | (q − t). The
assumption that the conjugate copies of V4 intersect trivially finally
implies that

3q(q2 − 1)

24
=

q(q ± 1)

2
,

hence (q2− 1)/4 = q± 1, which contradicts our assumption q ≥ 9. �

Corollary 3.8. The minimal simple groups of the form PSL(2, 3r),
where r is a prime, are not DTI-groups.

Corollary 3.9. Let G := PSL(2, q) be a minimal simple group. Then
G is a DTI-group if and only if q = 2r for some prime r or q = 7.

4. The Suzuki groups

In the following we collect some results on the subgroups of Suzuki
groups. The corresponding proofs can be found in [[8], Thm. 3.10 in
Ch. XI] and [[10], Thm. 4.12].

Theorem 4.1. Let G := Sz(q), where q = 22m+1 for some positive
integer m. Then a complete list of the subgroups of G is as follows:

(1) The Hall subgroup NG(T ) = TH which is a Frobenius group of
order q2(q − 1), where T is a Sylow 2-subgroup of G.

(2) The dihedral group T0 = NG(H) of order 2(q − 1).
(3) The cyclic Hall subgroups A1 and A2, where |A1| = 22m+1 +

2m+1 + 1 and |A2| = 22m+1 − 2m+1 + 1.



7

(4) The Frobenius subgroups T1 = NG(A1) and T2 = NG(A2), where
|T1| = 4|A1| and |T2| = 4|A2|.

(5) The subgroups of the form Sz(r) where r is an odd power of 2,
r ≥ 8 and q = rn for some n ∈ N.

(6) Subgroups (and their conjugates) of the above groups.

Moreover the conjugates of T , H, A1 and A2 form a partition of G. So
they are TI-subgroups of G.

Lemma 4.2. Let p be an odd prime number. Then the Suzuki group
Sz(2p) is a DTI-group if and only if p = 3.

Proof. Put G := Sz(2p). By Lemma 2.3 and Theorem 4.1 it suffices
to check whether the 2-subgroups which occur as derived subgroups of
subgroups of G are TI-subgroups. Suppose that T ∈ Syl2(G), and that
Q < T is a 2-subgroup which occurs as derived subgroup of a subgroup
of G. Assume |Q| = 2n. Now NG(T ) acts transitively on the set T \{1}.
If Q is a TI-subgroup, then Q \ {1} is a block under this action, and
therefore we have 2n − 1 | |T | − 1 = 22p − 1 = (2p − 1)(2p + 1). If
2n − 1 | 2p − 1, then n = p or n = 1. If 2n − 1 | 2p + 1, then by
Lemma 3.4 we have gcd(2n − 1, 2p + 1) = 3 if n is even. So n = 1
or n = 2. This means that if a 2-subgroup Q of G is a TI-subgroup,
then |Q| ∈ {2, 4, 2p, 22p}. But in case p > 3, it is known that T always
has a 3-generated subgroup whose derived subgroup is isomorphic to
C3

2, and which by the above cannot be a TI-subgroup. Finally, it is
straightforward to handle the case p = 3, and to check that the group
G = Sz(8) is indeed a DTI-group. �

Lemma 4.3. Let m be an odd composite number. Then the Suzuki
group Sz(2m) is not a DTI-group.

Proof. Let p be a prime divisor of m. Then by Theorem 4.1, the group
Sz(2m) contains a maximal subgroup which is isomorphic to the simple
group Sz(2m/p). Now the assertion follows from Lemma 2.4. �

5. The simple groups which are not minimal

In this section we show that the non-minimal simple groups are not
DTI-groups. For this purpose, we need the following lemma.

Lemma 5.1. Let q be a prime power. Then SL(3, q) and PSL(3, q) are
DTI-groups if and only if q = 2.
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Proof. We handle the cases q = 2 and q = 3 by means of computation,
and assume from now on that q ≥ 4. Let G := SL(3, q), and put

H :=

{(
h 0
0 1

) ∣∣∣∣ h ∈ SL(2, q)

}
< G.

Then H ∼= SL(2, q) is perfect. Now putting

t :=

 1 0 0
0 1 1
0 0 1

 ,

we have

H ∩H t =

{ 1 0 0
a 1 0
0 0 1

∣∣∣∣ a ∈ Fq
}
∼= (Fq,+) /∈ {1, H},

and therefore H is not a DTI-subgroup, and G is not a DTI-group.
Now taking images under the canonical projection modulo the centre
of G, all of this argumentation remains intact. – Homomorphic images
of perfect groups are still perfect groups, and as the order of the centre
is either 1 or 3 (hence in particular smaller than q), the intersection
of the conjugates cannot be merged into one equivalence class. The
assertion for the groups PSL(3, q) follows. �

Lemma 5.2. Suppose that G is a non-abelian simple group which is
not minimal simple. Then G is not a DTI-group.

Proof. We use the classification of finite simple groups, cf. e.g. [3]. First
we consider the sporadic simple groups. The table given below shows
that every sporadic simple group has a proper non-DTI-subgroup, and
that therefore there is no sporadic simple DTI-group:

Group Non-DTI-subgroup Group Non-DTI-subgroup
M11 PSL(2, 11) M12 M11

J1 PSL(2, 11) M22 A7

J2 PSU(3, 3) M23 M11
2F4(2)′ PSL(2, 25) HS M22

J3 PSL(2, 19) M24 M23

McL M22 He A7

Ru A8 Suz A7

O′N J1 Co3 HS
Co2 McL Fi22 A10

HN A12 Ly A11

To be continued.
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Continued.

Group Non-DTI-subgroup Group Non-DTI-subgroup
Th PSL(2, 19) Fi23 A12

Co1 Co2 J4 PSL(2, 23)
Fi′24 Fi23 B M11

M Th

Now suppose that G is a group of Lie type. If G is a Chevalley
group except PSL(2, q) and PSp(4, q), then by [2], it has a subgroup
isomorphic to either SL(3, q) or PSL(3, q). By Lemma 5.1 the latter
are not DTI-groups unless q = 2, and the case q = 2 can be dealt with
in a tedious case-by-case analysis. If G = PSp(4, q) and q is even, then
by [11], it has a maximal subgroup isomorphic to the Suzuki group
Sz(q) – and therefore it is not a DTI-group by Lemma 2.4.

If G is a Steinberg group, then it is of one of the types 2An(q2),
n ≥ 2, 2Dn(q2), n ≥ 4, 2E6(q

2) or 3D4(q
3). Now again by [2], the

groups 2Dn(q2), n ≥ 4, 2E6(q
2) and 3D4(q

3) have subgroups isomorphic
to either SL(3, q) or PSL(3, q) – and again by Lemma 5.1 the latter are
not DTI-groups unless q = 2. Also, as above the case q = 2 can be dealt
with in a tedious case-by-case analysis. Further if n ≥ 5, then 2An(q2)
has a proper subgroup isomorphic to either SL(3, q2) or PSL(3, q2). So
we consider the Steinberg groups 2An(q2) for n ∈ {2, 3, 4}. For q odd,
the group 2An(q2) has the simple subgroup PΩ+

n (q), which is not a
DTI-group by the previous paragraph. So we may assume that q is a
power of 2. Since the groups 2A2(q

2) ∼= PSL(2, q) have already been
treated before, we may assume that n ∈ {3, 4}. But then the group
2An(q2) has a subgroup isomorphic to the simple group SL(2, q2), hence
it is not a DTI-group.

The simple groups of types 2F4(2
2m+1) and 2G2(3

2n+1) have non-DTI-
subgroups isomorphic to PSL(2, 25) and PSL(2, 32n+1), respectively.
Finally, in Section 4 we have shown that except for Sz(8) the Suzuki
groups are not DTI-groups, and the proof is completed. �
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