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ABSTRACT. We present a countable simple group which arises in a natural way from the
arithmetical structure of the ring of integers.

1. INTRODUCTION

Various types of infinite simple groups are treated in the literature so far: We refer to
Carter [4] for the simple groups of Lie type, to Higman [9] and Stein [21] for finitely
presented simple groups, to Kegel, Wehrfritz [11] for locally finite simple groups, to
Baer [1] for composition factors of infinite symmetric groups, and to Ol’shanskii [20] and
Chehata [5] for constructions of simple groups with certain given special properties.

Here we present and investigate an infinite simple group, which emerges in a natural
way from the arithmetical structure of the ring of integers. By r(m) we denote the residue
class r +mZ.

Definition 1.1. Let CT(Z) be the group generated by the set of all class transpositions:
Given disjoint residue classes r1(m1) and r2(m2) of Z, we define the class transposition
τr1(m1),r2(m2) ∈ Sym(Z) as the permutation which interchanges r1 + km1 and r2 + km2

for each integer k and which fixes all other points. Here we assume that 0 6 r1 < m1 and
that 0 6 r2 < m2. For convenience, we set τ := τ0(2),1(2) : n 7→ n+ (−1)n.

The theorems given below list various properties of the group CT(Z) and provide in-
formation on the class of groups which embed into it, respectively. Their proof is the main
subject of this article.

Theorem 1.2 (Properties of CT(Z)).
(1) The group CT(Z) is simple.
(2) The group CT(Z) is countable, but it has an uncountable series of simple sub-

groups which is parametrized by the sets of odd primes.
(3) The group CT(Z) is not finitely generated.
(4) The torsion elements of CT(Z) are divisible.
(5) The group CT(Z) acts highly transitively on N0, and it has a locally finite simple

subgroup which does so as well.

Theorem 1.3 (Richness of the class of subgroups of CT(Z)).
(1) Every finite group embeds into CT(Z).
(2) Every free group of finite rank embeds into CT(Z).
(3) Every free product of finitely many finite groups embeds into CT(Z).
(4) The class of subgroups of CT(Z) is closed under taking

(a) direct products,
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(b) wreath products with finite groups, and
(c) restricted wreath products with (Z,+).

(5) The group CT(Z) has
(a) finitely generated subgroups which do not have finite presentations, and
(b) finitely generated subgroups with unsolvable membership problem.

Note however that since words in the generators of subgroups of CT(Z) can always be
evaluated and compared, groups with unsolvable word problem do not embed into CT(Z).

So far, research in computational group theory focussed mainly on finite permutation
groups, matrix groups, finitely presented groups, polycyclically presented groups and au-
tomatic groups. For details, we refer to [10].

This article describes another large class of groups which are accessible to computa-
tional methods. This class includes the subgroups of CT(Z). Algorithms to compute with
such groups are described in [16] and implemented in the package RCWA [14] for the
computer algebra system GAP [8]. Many of the results proved in this article have first
been discovered during extensive experiments with the RCWA package.

As a little example of how to compute in the group CT(Z), we factor the permutation

α ∈ Sym(Z) : n 7−→


2n/3 if n ∈ 0(3),
(4n− 1)/3 if n ∈ 1(3),
(4n+ 1)/3 if n ∈ 2(3)

into class transpositions, which shows that α ∈ CT(Z). This permutation has already
been investigated by Lothar Collatz in 1932, and its cycle structure is unknown so far (cf.
Keller [12], Wirsching [22]).

In addition to the results given in Theorems 1.2 and 1.3, in the last section we determine
two simple supergroups of CT(Z) which are in a certain sense ‘canonical’.

2. BASIC PROPERTIES OF CT(Z)

In this section we prove that the group CT(Z) is not finitely generated, that every finite
group embeds into it, that its torsion elements are divisible and that it acts highly transi-
tively on N0. This covers Theorem 1.2, Assertion (3), (4) and the first part of (5), as well
as Theorem 1.3, Assertion (1). However, first we need to introduce some basic terms:

Definition 2.1. We call a mapping f : Z→ Z residue-class-wise affine if there is a positive
integer m such that the restrictions of f to the residue classes r(m) ∈ Z/mZ are all affine,
i.e. given by f |r(m) : r(m)→ Z, n 7→ (ar(m) · n+ br(m))/cr(m) for certain coefficients
ar(m), br(m), cr(m) ∈ Z depending on r(m). We call the least possiblem the modulus of f ,
written Mod(f). For reasons of uniqueness, we assume that gcd(ar(m), br(m), cr(m)) = 1
and that cr(m) > 0. We define the multiplier of f by lcm{ar(m) | r(m) ∈ Z/mZ}, and the
divisor of f by lcm{cr(m) | r(m) ∈ Z/mZ}. We call the mapping f integral if its divisor
is 1. We call f class-wise order-preserving if all ar(m) are positive.

It is easy to see that the permutations of this kind form a countable supergroup of CT(Z).

Definition 2.2. We denote the group which is formed by all residue-class-wise affine per-
mutations of Z by RCWA(Z), and call its subgroups residue-class-wise affine groups.

The notation ‘CT(Z)’, respectively, ‘RCWA(Z)’ reflects that generalizations to suit-
able rings other than Z make perfect sense. For the sake of simplicity and to keep the
article easy to read, we refrain from following this possibly fruitful direction of research
here.
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Theorem 2.3. The group CT(Z) is not finitely generated.

Proof. It is easy to see that the multiplier of a product of residue-class-wise affine per-
mutations divides the product of the multipliers of the factors, and that the corresponding
assertion about divisors holds as well. Further, inversion obviously interchanges multiplier
and divisor. Therefore as there are infinitely many primes and as for any n ∈ N there is a
class transposition τ1(2),0(2n) with multiplier and divisor n, the assertion follows. �

Finite symmetric groups embed into CT(Z):

Definition 2.4. Letm ∈ N, and let Sm be the symmetric group of degreem. We define the
monomorphismϕm : Sm ↪→ CT(Z) by σ 7→ (σϕm: n 7→ n+ (nmodm)σ− (nmodm)),
where we assume that Sm acts naturally on the set {0, 1, . . . ,m− 1}.

Theorem 2.5. Any finite group embeds into CT(Z), and the group CT(Z) acts highly
transitively on N0.

Proof. The first assertion is immediate.
Let m ∈ N. Just like the group Sm itself, its image under ϕm acts m-transitively on the

set {0, 1, . . . ,m− 1}. The second assertion follows since m can be chosen arbitrary large
and since class transpositions map nonnegative integers to nonnegative integers. �

Theorem 2.6. The torsion elements of CT(Z) are divisible.

Proof. We show that given an element g ∈ CT(Z) of finite order and a positive integer k,
there is always an h ∈ CT(Z) such that hk = g: Since g has finite order, it permutes
a partition P of Z into finitely many residue classes on all of which it is affine. A k-th
root h can be constructed from g by ‘slicing’ cycles

∏l
i=2 τr1(m1),ri(mi) on P into cycles∏l

i=1

∏k−1
j=max(2−i,0) τr1(km1),ri+jmi(kmi) of the k-fold length on the refined partition ob-

tained from P by decomposing any ri(mi) ∈ P into residue classes (mod kmi). �

3. THE SIMPLICITY OF CT(Z)

The aim of this section is to show that the group CT(Z) is simple, and that it has an
uncountable series of simple subgroups which is parametrized by the sets of odd primes.
This covers Theorem 1.2, Assertion (1) and (2). First we need some lemmata:

Lemma 3.1. Given two class transpositions τr1(m1),r2(m2), τr3(m3),r4(m4) not equal to τ ,
there is a product π of 6 class transpositions such that τπr1(m1),r2(m2)

= τr3(m3),r4(m4).

Proof. Let r5(m5), r6(m6) ⊂ Z \ (r1(m1)∪ r2(m2)) be disjoint residue classes such that
∪6
i=3ri(mi) 6= Z, and let r7(m7), r8(m8) ⊂ Z \ ∪6

i=3ri(mi) be disjoint residue classes.
Then the following hold:

(1) τr1(m1),r2(m2)
τr1(m1),r5(m5) · τr2(m2),r6(m6) = τr5(m5),r6(m6).

(2) τr5(m5),r6(m6)
τr5(m5),r7(m7) · τr6(m6),r8(m8) = τr7(m7),r8(m8).

(3) τr7(m7),r8(m8)
τr3(m3),r7(m7) · τr4(m4),r8(m8) = τr3(m3),r4(m4).

The assertion follows. �

Lemma 3.2. Let σ, υ ∈ RCWA(Z), and put m := Mod(σ). If υ is integral and fixes all
residue classes (mod m) setwise, then the commutator [σ, υ] is integral as well.

Proof. An affine partial mapping α of [σ, υ] = σ−1υ−1συ is the product of affine partial
mappings ασ−1 , αυ−1 , ασ and αυ of σ−1, υ−1, σ and υ, respectively. Since υ fixes all
residue classes (mod m), we have ασ−1 = α−1

σ , and therefore α = αασυ−1 · αυ . The
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assertion follows since the translations and reflections generate a normal subgroup of the
affine group of the rationals. �

Lemma 3.3. Let G be a subgroup of RCWA(Z) which contains CT(Z). Then any non-
trivial normal subgroup N �G has an integral element ι 6= 1.

Proof. Let σ ∈ N \ {1}, and let m := Mod(σ). Without loss of generality we can assume
that there is a residue class r(m) such that r(m)σ 6= r(m). By Lemma 3.2, the mapping
ι := [σ, τr(2m),r+m(2m)] ∈ N \ {1} is integral. �

Now we can prove our theorem:

Theorem 3.4. The group CT(Z) is simple.

Proof. LetN be a nontrivial normal subgroup of CT(Z). We have to show thatN contains
all class transpositions.

By Lemma 3.1, all class transpositions except for τ are conjugate in CT(Z). Further-
more we have τ = τ0(4),1(4) · τ2(4),3(4). Therefore it is already sufficient to show that N
contains one class transposition which is not equal to τ .

By Lemma 3.3, the normal subgroup N has an integral element ι1 6= 1. Let m > 3 be
a multiple of the modulus of ι1, and choose a residue class r(m) which is moved by ι1.
Then put ι2 := τr(2m),r+m(2m) · τr(2m)ι1 ,(r+m(2m))ι1 = [τr(2m),r+m(2m), ι1] ∈ N .

By the choice ofm, we can now choose two distinct residue classes r1(2m) and r2(2m)
in the complement of the support of ι2. Then we have

τr1(2m),r2(2m) = ι
τr(2m),r1(4m)·τr+m(2m),r2(4m)

2

· ιτr(2m),r1+2m(4m)·τr+m(2m),r2+2m(4m)

2 ∈ N,

which completes the proof of the theorem. �

Remark 3.5. Assume CT(Z) 6 G 6 RCWA(Z), and let N be a nontrivial normal sub-
group of G. Then the proof of Theorem 3.4 shows in fact that N contains CT(Z), if we
additionally take care that in the third paragraph we choose m sufficiently large such that
there is indeed a residue class r(m) which is not mapped to itself under ι1.

Definition 3.6. Given a set P of odd primes, let CTP(Z) 6 CT(Z) denote the subgroup
which is generated by all class transpositions τr1(m1),r2(m2) for which all odd prime factors
of m1 and m2 lie in P.

Corollary 3.7. The groups CTP(Z) are simple. Therefore the group CT(Z) has an un-
countable series of simple subgroups, which is parametrized by the sets of odd primes.

Proof. All of our arguments in this section apply to the groups CTP(Z) as well: In the
proof of Lemma 3.1, we can choose the four residue classes r5(m5), . . . , r8(m8) in such a
way that all prime factors of their moduli already dividem1m2m3m4. The proofs of Lem-
mas 3.2, 3.3 and Theorem 3.4 likewise do not require the presence of class transpositions
whose moduli have certain odd factors. �

Problem 3.8 (Isomorphism Problem). Are there distinct sets P1 and P2 of odd primes such
that CTP1(Z) ∼= CTP2(Z)?

4. RICHNESS OF THE CLASS OF SUBGROUPS OF CT(Z)

In this section we prove Theorem 1.3, Assertion (2) – (5), as well as the second part of
Theorem 1.2, Assertion (5).
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Theorem 4.1. Free groups of finite rank embed into CT(Z).

Proof. It suffices to show that the free group of rank 2 embeds. An example of an embed-
ding is

ϕF2 : F2 = 〈a, b〉 ↪→ CT(Z), a 7→ (τ · τ0(2),1(4))2, b 7→ (τ · τ0(2),3(4))2.
This can be seen by applying the Table-Tennis Lemma (see for example de la Harpe [6],
Section II.B.) to the cyclic groups generated by the images of a and b under ϕF2 and the
sets 0(4) ∪ 1(4) and 2(4) ∪ 3(4). �

Theorem 4.2. Every free product of finitely many finite groups embeds into CT(Z).

Proof. Let G0, . . . , Gm−1 be finite groups. To see that their free product embeds into
CT(Z), proceed as follows: First consider regular permutation representations ϕr of the
groups Gr on the residue classes (mod |Gr|). Then take conjugates Hr := (imϕr)σr of
the images of these representations under mappings σr ∈ CT(Z) which map 0(|Gr|) to
Z\r(m). Finally use the fact that point stabilizers in regular permutation groups are trivial
and apply the Table-Tennis Lemma to the groups Hr and the residue classes r(m) to see
that the group generated by the Hr is isomorphic to their free product. �

The group RCWA(Z) is not co-Hopfian. We need the following monomorphisms:

Definition 4.3. Let f be an injective residue-class-wise affine mapping, and let further
πf : RCWA(Z) ↪→ RCWA(Z), σ 7→ σf be the monomorphism defined by the properties
∀σ ∈ RCWA(Z) fσf = σf and supp(imπf ) ⊆ im f . Then we call πf the restriction
monomorphism associated with f .

Theorem 4.4. The class of subgroups of CT(Z) is closed under taking direct products, un-
der taking wreath products with finite groups and under taking restricted wreath products
with (Z,+). It is also closed under taking upwards extensions by finite groups.

Proof. Given any two subgroups G,H 6 RCWA(Z), the group generated by πn 7→2n(G)
and πn7→2n+1(H) is clearly isomorphic to G×H . This argument applies to subgroups of
our group CT(Z) as well, since the image of a class transposition τr1(m1),r2(m2) under a
restriction monomorphism πn 7→mn+r is τmr1+r(mm1),mr2+r(mm2).

Looking at the monomorphisms πn 7→mn+r and ϕm, it is immediate to see that the
classes of subgroups of RCWA(Z) and CT(Z) are also closed under taking wreath pro-
ducts with finite groups. The assertion on upwards extensions by finite groups follows
now from the Universal Embedding Theorem (see e.g. Theorem 2.6A in Dixon and Mor-
timer [7]).

Given a subgroup G 6 CT(Z), the group generated by πn 7→4n+3(G) and τ · τ0(2),1(4)
is isomorphic to the restricted wreath product G o (Z,+). This holds since the orbit of the
residue class 3(4) under the action of the cyclic group 〈τ · τ0(2),1(4)〉 consists of infinitely
many pairwise disjoint residue classes, which means that the conjugates of πn 7→4n+3(G)
under powers of τ · τ0(2),1(4) have pairwise disjoint supports. �

Corollary 4.5. The group CT(Z) has
(1) finitely generated subgroups which do not have finite presentations, and
(2) finitely generated subgroups with unsolvable membership problem.

Proof.
(1) By Theorem 4.4, the group CT(Z) contains nontrivial restricted wreath products

G o (Z,+). By Baumslag [2], these do not have finite presentations.
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(2) Let F2 = 〈a, b〉 be the free group of rank 2. Further let r1, . . . , rk ∈ F2 be the rela-
tors of a finitely presented group with unsolvable word problem – by Novikov [19]
and Boone [3], such groups exist. Then the membership problem for the group
〈(a, a), (b, b), (1, r1), . . . , (1, rk)〉 < F2 × F2 is unsolvable (cf. Mihailova [18];
see also Lyndon and Schupp [17], Chapter IV.4). Therefore as by Theorems 4.1
and 4.4 the group F2 × F2 embeds into CT(Z), there exist finitely generated sub-
groups G < CT(Z) with unsolvable membership problem. �

The class transpositions which interchange two residue classes with the same modulus
generate a proper subgroup of CT(Z), which acts highly transitively on N0 as well:

Definition 4.6. Let CTint(Z) denote the subgroup of CT(Z) which is generated by all
integral class transpositions.

Theorem 4.7. The group CTint(Z) is locally finite and simple.

Proof. Finitely generated subgroups of CTint(Z) act faithfully on the set of residue classes
modulo the lcm of the moduli of the generators. Therefore they are finite. Hence the group
CTint(Z) is locally finite.

Let N be a nontrivial normal subgroup of CTint(Z). In order to prove that CTint(Z) is
simple, we have to show that N contains any class transposition of the form τr1(m),r2(m).

Let ι ∈ N\{1}, letm>2 be a multiple of Mod(ι) and choose a residue class r(m) in the
support of ι. Then we have τr(2m),r+m(2m)·τr(2m)ι,(r+m(2m))ι = [ι, τr(2m),r+m(2m)] ∈N .

All such products of two integral class transpositions with modulus 2m and disjoint
supports are conjugate in CTint(Z). The reason for this is that their preimages under the
monomorphism ϕ2m have the same cycle structure, and are therefore conjugate in S2m.

Let τ1 = τr1(m),r2(m) be an integral class transposition with modulus m. Then for any
integral class transposition τ2 with modulus 2m whose support intersects trivially with the
one of τ1, we have τ1 = (τ2 · τr1(2m),r2(2m)) · (τ2 · τr1+m(2m),r2+m(2m)) ∈ N .

Given a divisor d of m and an integral class transposition τr1(d),r2(d) with modulus d,
we have τr1(d),r2(d) =

∏m/d−1
k=0 τr1+kd(m),r2+kd(m) ∈ N .

In the second paragraph of the proof, we can choose m to be a multiple of any given
positive integer. Therefore we can conclude that N contains indeed any integral class
transposition. Hence the group CTint(Z) is simple, as claimed. �

5. COLLATZ’ PERMUTATION LIES IN CT(Z)

In this section, as a small but illustrative example we show that Collatz’ permutation

α ∈ RCWA(Z) : n 7−→


2n/3 if n ∈ 0(3),
(4n− 1)/3 if n ∈ 1(3),
(4n+ 1)/3 if n ∈ 2(3)

lies in CT(Z).
In Keller [12] it is shown that α has at most finitely many cycles of any given finite

length. However according to Wirsching [22], it is for example not yet known whether the
cycle ( . . . 34 45 30 20 27 18 12 8 11 15 10 13 17 23 31 . . . ) of α is finite or infinite.

In spite of this we can show that the permutation α lies in CT(Z) by determining an
explicit factorization into generators.

The major obstacle we are confronted with when trying to obtain such a factorization
is the fact that the multiplier and the divisor of α are coprime, whereas the multiplier and
the divisor of a class transposition are always the same. We even need to form a product of
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class transpositions in such a way that one prime divisor gets eliminated from the multiplier
of the product, but appears in the denominators of all of its affine partial mappings.

As a first step towards a solution of the factorization problem, we hence attempt to
determine some product of class transpositions which has coprime multiplier and divisor.
We find that given an odd prime p, the permutation

σp := τ0(8),1(2p) · τ4(8),2p−1(2p)

· τ0(4),1(2p) · τ2(4),2p−1(2p)

· τ2(2p),1(4p) · τ4(2p),2p+1(4p) ∈ CT(Z)

has multiplier p and divisor 2. Indeed, evaluating this product yields

σp : n 7−→



(pn+ 2p− 2)/2 if n ∈ 2(4),
n/2 if n ∈ 0(4) \ (4(4p) ∪ 8(4p)),
n+ 2p− 7 if n ∈ 8(4p),
n− 2p+ 5 if n ∈ 2p− 1(2p),
n+ 1 if n ∈ 1(2p),
n− 3 if n ∈ 4(4p),
n if n ∈ 1(2) \ (1(2p) ∪ 2p− 1(2p)).

The GAP [8] package RCWA [14] provides a factorization routine for residue-class-wise
affine permutations, which uses certain elaborate heuristics. The permutations σp and their
images under restriction monomorphisms πn 7→mn+r play a key role in this routine. It has
been used to obtain the following factorization of α:

α = τ2(3),3(6) · τ1(3),0(6) · τ0(3),1(3) · τ · τ0(36),1(36)
· τ0(36),35(36) · τ0(36),31(36) · τ0(36),23(36) · τ0(36),18(36) · τ0(36),19(36)
· τ0(36),17(36) · τ0(36),13(36) · τ0(36),5(36) · τ2(36),10(36) · τ2(36),11(36)
· τ2(36),15(36) · τ2(36),20(36) · τ2(36),28(36) · τ2(36),26(36) · τ2(36),25(36)
· τ2(36),21(36) · τ2(36),4(36) · τ3(36),8(36) · τ3(36),7(36) · τ9(36),16(36)
· τ9(36),14(36) · τ9(36),12(36) · τ22(36),34(36) · τ27(36),32(36) · τ27(36),30(36)
· τ29(36),33(36) · τ10(18),35(36) · τ5(18),35(36) · τ10(18),17(36) · τ5(18),17(36)
· τ8(12),14(24) · τ6(9),17(18) · τ3(9),17(18) · τ0(9),17(18) · τ6(9),16(18)
· τ3(9),16(18) · τ0(9),16(18) · τ6(9),11(18) · τ3(9),11(18) · τ0(9),11(18)
· τ6(9),4(18) · τ3(9),4(18) · τ0(9),4(18) · τ0(6),14(24) · τ0(6),2(24)
· τ8(12),17(18) · τ7(12),17(18) · τ8(12),11(18) · τ7(12),11(18) · σ−1

3

· τ7(12),17(18) · τ2(6),17(18) · τ0(3),17(18) · σ−3
3 .

This shows constructively that α ∈ CT(Z).

6. TWO SIMPLE SUPERGROUPS OF CT(Z)

In this section we present two simple subgroups of RCWA(Z) which properly contain
CT(Z) and which act highly transitively on Z.

We find them in the kernels of certain epimorphisms π+ : RCWA+(Z) → (Z,+) and
π− : RCWA(Z) → Z× ∼= C2, where RCWA+(Z) < RCWA(Z) denotes the subgroup
consisting of all class-wise order-preserving elements.
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Using the notation σ|r(m) : n 7→ (ar(m) · n + br(m))/cr(m) for the affine partial map-
pings of an rcwa permutation σ with modulus m, these epimorphisms are given by

π+ : σ 7→ 1
m

∑
r(m)∈Z/mZ

br(m)

|ar(m)|

and

π− : σ 7→ (−1)

π+(σ) +
∑

r(m): ar(m)<0

m− 2r
m

,

respectively (see Sections 2.11 and 2.12 in Kohl [13]).

Definition 6.1. We denote the kernels of π+ and π− by K+ and K−, respectively.

It is easy to see that CT(Z) < K+ < K− < RCWA(Z).
Our simple groups will be the subgroups of K+ and K−, respectively, which are gen-

erated by the elements which are tame in the following sense:

Definition 6.2. We call an element σ ∈ RCWA(Z) tame if it permutes a partition of Z into
finitely many residue classes on each of which it is affine, and wild otherwise. We call a
group G < RCWA(Z) tame if there is a common such partition for all elements of G, and
wild otherwise. We call the specified partitions respected partitions of σ, respectively, G.

For an alternative characterization of this notion of tameness and a generalization of it to
not necessarily bijective residue-class-wise affine mappings, see Kohl [13], [15].

Obviously, finite residue-class-wise affine groups and integral residue-class-wise affine
permutations are tame.

Tameness is invariant under conjugation: If α ∈ RCWA(Z) respects a partition P , then
a conjugate αβ respects the partition consisting of the images of the intersections of the
residue classes in P with the sources of the affine partial mappings of β under β.

The product of two tame permutations is in general not tame. Tameness of products also
does not induce an equivalence relation on the set of tame permutations: let for example
a := τ1(6),4(6), b := τ0(5),2(5) and c := τ3(4),4(6). Then ab and bc are tame, but ac is not.

If a tame group does not act faithfully on a respected partition, then the kernel of the
action clearly does not act on N0. Thus as the group CT(Z) acts on N0, its tame subgroups
are finite.

Definition 6.3. We denote the normal subgroups of K+ and K− which are generated by
the tame elements by K̃+ and K̃−, respectively.

It is easy to see that all tame elements of RCWA(Z) can be factored into class transpo-
sitions and members of the following two series:

Definition 6.4. Let r(m) ⊆ Z be a residue class.
(1) We define the class shift νr(m) ∈ RCWA(Z) by

νr(m) : n 7→

{
n+m if n ∈ r(m),
n otherwise.

(2) We define the class reflection ςr(m) ∈ RCWA(Z) by

ςr(m) : n 7→

{
−n+ 2r if n ∈ r(m),
n otherwise,

where we assume that 0 6 r < m.
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For convenience, we set ν := νZ : n 7→ n+ 1 and ς := ςZ : n 7→ −n.

Obviously, class shifts and class reflections do not lie in K−.

Theorem 6.5. We have
(1) K̃+ = 〈CT(Z), ν1(3) · ν−1

2(3)〉, and

(2) K̃− = 〈CT(Z), ν1(3) · ν2(3), ς0(2) · ν0(2)〉.
Proof. We determine series of generators:

(1) Considering respected partitions, we check that K̃+ is generated by
(a) all class transpositions and
(b) all quotients of two class shifts with disjoint supports whose union has a non-

trivial complement in Z.
For this we look at the process of factoring a given tame ϑ ∈ K+ into these
elements:
ad (a) Let P be a respected partition of ϑ. Divide ϑ by a product of class transpo-

sitions which respects P as well and which induces on P the same permu-
tation as ϑ does. Now ϑ is integral and fixes P .

ad (b) Finally factor ϑ into quotients of two class shifts whose supports are dis-
tinct residue classes in P . This is possible since the lattice in Z|P| which
consists of all vectors with zero coordinate sum is spanned by the differ-
ences of two distinct canonical basis vectors.

(2) Considering respected partitions, we check that K̃− is generated by
(a) all products of a class reflection and a class shift with the same support which

has a nontrivial complement in Z,
(b) all class transpositions and
(c) all products of two class shifts with disjoint supports whose union has a non-

trivial complement in Z.
For this we look at the process of factoring a given tame ϑ ∈ K− into these
elements:
ad (a) Let P be a respected partition of ϑ of length at least 3. Divide ϑ from the

left by products ςr(m) ·νr(m), where r(m) runs over all residue classes in P
on which ϑ is order-reversing. Now ϑ is class-wise order-preserving.

ad (b) Divide ϑ by a product of class transpositions which respects the partition P
as well, and which also induces the same permutation on it. Now ϑ is
integral and fixes P .

ad (c) Finally factor ϑ into products of two class shifts whose supports are distinct
residue classes in P and inverses of such products. This is possible since
the lattice in Z|P| which consists of all vectors with even coordinate sum is
spanned by the sums of two distinct canonical basis vectors.

Now we collapse series 1.(b), 2.(a) and 2.(c) by taking orbit representatives under the
conjugation action of the group CT(Z) to obtain the indicated single generators. �

Theorem 6.6. The groups K̃+ and K̃− are simple.

Proof. By Remark 3.5, nontrivial normal subgroups of K̃+ and K̃− contain CT(Z).
(1) Let N be a nontrivial normal subgroup of K̃+. Given disjoint residue classes

r1(m1) and r2(m2) whose union has a nontrivial complement in Z, for an arbitrary
residue class r3(m3) ⊆ Z \ (r1(m1) ∪ r2(m2)) we have

νr1(m1) · ν
−1
r2(m2)

= [τr1(m1),r2(m2), νr3(m3) · ν
−1
r2(m2)

] ∈ N.
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Putting r1(m1) := 1(3) and r2(m2) := 2(3), the simplicity of K̃+ follows from
Theorem 6.5, Assertion (1).

(2) Let N be a nontrivial normal subgroup of K̃−. Given disjoint residue classes
r1(m1) and r2(m2) whose union has a nontrivial complement in Z, for an arbitrary
residue class r3(m3) ⊆ Z \ (r1(m1) ∪ r2(m2)) we have

νr1(m1) · νr2(m2) = [τr1(m1),r2(m2), νr3(m3) · ςr1(m1)]

· [τr1(m1),r2(m2), ςr1(m1) · νr1(m1)] ∈ N.

This shows in particular that N contains ν1(3) · ν2(3). Let r(m) ⊂ Z be a residue
class. Then for any residue class r̃(m̃) ⊆ Z \ r(m) we have

ςr(m) · νr(m) = [τr(m),r̃(m̃), ςr(m) · νr̃(m̃)] · [τr̃(2m̃),r̃+m̃(2m̃), ςr̃(2m̃) · νr̃(2m̃)]

· (νr̃(2m̃) · νr̃+m̃(2m̃) · τr̃(2m̃),r̃+m̃(2m̃))−1 ∈ N.

This shows in particular that N contains also ς0(2) · ν0(2), and the simplicity of the
group K̃− follows from Theorem 6.5, Assertion (2). �

Theorem 6.7. The groups K̃+ and K̃− act highly transitively on Z.

Proof. Since K̃+ < K̃− it is sufficient to prove the assertion for K̃+. Let k be a positive
integer, and let (n1, . . . , nk) and (ñ1, . . . , ñk) be two k-tuples of pairwise distinct integers.
We have to show that there is an element σ ∈ K̃+ such that (nσ1 , . . . , n

σ
k) = (ñ1, . . . , ñk).

Let m := 2k + 1, and choose a residue class r(m) which does not contain one of the
points ni or ñi. Define σ1, σ̃1 ∈ K̃+ by

σ1 :=
∏

i:ni<0

(νr(m) · ν−1
ni(m))

bnim c and σ̃1 :=
∏

i:ñi<0

(νr(m) · ν−1
ñi(m))

b ñim c,

respectively. Then the images of all points ni under σ1 are nonnegative, and the same holds
for the images of the points ñi under σ̃1. Since CT(Z) acts highly transitively on N0, we
can choose an element σ2 ∈ CT(Z) < K̃+ which maps the images of the ni under σ1

to the images of the ñi under σ̃1. Now the permutation σ := σ1 · σ2 · σ̃−1
1 serves our

purposes. �

Conjecture 6.8. The group RCWA(Z) is generated by its tame elements.

Remark 6.9. Conjecture 6.8 is equivalent to the assertion that K̃+ = K+ and K̃− = K−.
If it holds, we have RCWA(Z) = 〈CT(Z), ς0(2)〉:

(1) It is ν = ς0(2) · τ · (ς
τ1(4),2(4)
0(2) · ςτ1(2),0(4)0(2) )τ0(2),1(4) ∈ 〈CT(Z), ς0(2)〉.

(2) It is ν0(2) = τν, ν1(2) = ντ0(2), ς1(2) = ςτ0(2) and ς = ς0(2) · ν1(2) · ς1(2). Therefore
we know that {ν0(2), ν1(2), ς1(2), ς} ⊂ 〈CT(Z), ς0(2)〉.

(3) Let r(m) ⊂ Z be a residue class 6= 1(2). We choose an arbitrary residue class
r̃(m̃) ⊆ Z \ (0(2) ∪ r(m)), and put ϑ := τ0(2),r̃(m̃) · τr̃(m̃),r(m) ∈ CT(Z). Then
we have {νr(m), ςr(m)} = {νϑ0(2), ς

ϑ
0(2)} ⊂ 〈CT(Z), ς0(2)〉.

The factorization routine in RCWA [14] provides some evidence for Conjecture 6.8.
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