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Abstract

A mapping f : Z → Z is called residue-class-wise affine if there is
a positive integer m such that f is affine on residue classes (mod m).
The smallest such m is called the modulus of f . In this article it is
shown that if the mapping f is surjective but not injective, then the set
of moduli of its powers is not bounded. Further it is shown by giving
examples that the three other combinations of (non-) surjectivity and
(non-) injectivity do not permit a conclusion on whether the set of
moduli of powers of a mapping is bounded or not.
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1 Introduction

The following conjecture has been made by Lothar Collatz in the 1930s:

1.1 3n+1 Conjecture Iterated application of the mapping

T : Z −→ Z, n 7−→

{
n
2

if n even,
3n+1

2
if n odd

to any positive integer yields 1 after a finite number of steps. In short this
means that for all n ∈ N, there exists k ∈ N0 such that T (k)(n) = 1.

This conjecture is still open today. See [7] for a survey article and [8] for
an annotated bibliography.
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Together with the fact that there is no k ∈ N such that T (k) maps all
positive integers to smaller ones, a reason for the difficulty of this problem
is that there is no upper bound on the number of different affine partial
mappings of powers T (k) of the Collatz mapping T .

The mapping T is surjective, but not injective. We ask whether in fact
all surjective, but not injective mappings which are ‘similar to T ’ share the
last-mentioned property. Further we ask how the situation looks like for the
three other combinations of (non-) surjectivity and (non-) injectivity.

1.2 Definition We call a mapping f : Z → Z residue-class-wise affine if
there is a positive integer m such that the restrictions of f to the residue
classes r(m) ∈ Z/mZ are all affine. This means that for any residue class
r(m) there are coefficients ar(m), br(m), cr(m) ∈ Z such that the restriction of
the mapping f to the set r(m) = {r + km|k ∈ Z} is given by

f |r(m) : r(m) → Z, n 7→
ar(m) · n + br(m)

cr(m)

.

We call the smallest possible m the modulus of f , written Mod(f). To ensure
uniqueness of the coefficients, we assume that gcd(ar(m), br(m), cr(m)) = 1 and
that cr(m) > 0. We define the multiplier of f by the least common multiple
of the coefficients ar(m), and use the notation Mult(f). Similarly, we define
the divisor of f by the least common multiple of the coefficients cr(m), and
use the notation Div(f).

Now we can give a formal definition of the property mentioned above:

1.3 Definition Let f : Z → Z be a residue-class-wise affine mapping. We
call f tame if the set {Mod(f (k))|k ∈ N} is bounded, and wild otherwise.

1.4 Examples For the Collatz mapping we have Mod(T ) = 2, Mult(T ) = 3
and Div(T ) = 2. The Collatz mapping is surjective. However it is not
injective – the preimage of n ∈ 2(3) under T is {2n, (2n − 1)/3}. For any
k ∈ N we have Mod(T (k)) = 2k. Therefore the mapping T is wild. Another
mapping which is also surjective but not injective is

T1 : Z −→ Z, n 7−→

{
n
2

if n even,
n+1

2
if n odd.

There we have Mod(T1) = Div(T1) = 2 and Mult(T1) = 1, and the preimage
of an integer n under T1 is {2n, 2n− 1}.
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The main result of this article is that a residue-class-wise affine mapping
which is surjective but not injective is always wild. Further it is shown by
giving counterexamples that no such conclusion can be made if the mapping
is either bijective or not surjective.

Surjectivity and injectivity are easily computable properties of residue-
class-wise affine mappings. A couple of necessary and sufficient conditions
can be found in [9]. Straightforward tests involve only computing images of
residue classes under affine mappings, checking whether a given finite set of
residue classes entirely covers the set of integers and checking whether two
given residue classes intersect nontrivially (Chinese Remainder Theorem).

Detailed background on the subject is given in [6]. That thesis is mainly
about residue-class-wise affine groups. These are permutation groups whose
elements are bijective residue-class-wise affine mappings. However, apart
from this also some further criteria are derived for deciding whether a given
residue-class-wise affine mapping is tame or wild.

There is an article [11] by G. Venturini which certainly should be men-
tioned in this context. This article studies the iteration of residue-class-wise
affine mappings. It is mainly concerned with classifying ergodic sets of such
mappings which are unions of finitely many residue classes. It discusses a
considerable number of examples.

Investigating residue-class-wise affine mappings and -groups by means of
computation is feasible – see the package RCWA [5] for the computer algebra
system GAP [2]. Both [6] and the manual of [5] discuss numerous examples.

2 Surjective and Non-Injective Means Wild

In the sequel it will be convenient to regard Z as a topological space with
the following topology:

2.1 Definition The Furstenberg topology on Z (cf. [1], and see also [4]
and [10]) is the topology which is induced by taking the set of residue classes
(mod m) for all integers m > 1 as a basis.

We need a notion of density for open and closed subsets of Z:

2.2 Definition Given a residue class r(m) ⊆ Z, let µ(r(m)) := 1/m. Given
a subset S ⊆ Z, let µ(Z \ S) := 1− µ(S), and given two subsets S1, S2 ⊆ Z
let µ(S1 ∪ S2) := µ(S1) + µ(S2) − µ(S1 ∩ S2). We call µ(S) the natural
density of S.

This notion of density complies in a natural way with the generally used
definition of the natural density of a set of integers.

3



We need a basic lemma on the density of images and preimages of open sets
under residue-class-wise affine mappings:

2.3 Lemma Let S ⊆ Z be an open set in the Furstenberg topology. Further
let α ∈ Aff(Q) : n 7→ (an + b)/c, and let f be a residue-class-wise affine
mapping. Then the following hold:

1. α(S) ⊆ Z =⇒ µ(α(S)) = µ(S) · |c/a|.

2. µ(f(S)) 6 µ(S) ·Div(f).

Proof: By definition the set of residue classes is a basis of our topology on Z.
Consequently there is a partition P of the open set S into residue classes.

1. This holds since provided that it is a subset of Z, the image of a residue
class r(m) ∈ P under α is a residue class with modulus am/c.

2. This assertion follows from (1), applied to the affine partial mappings
of f and the intersections of S with their sources. Images under con-
stant mappings have natural density 0, thus can be ignored in this
context. �

We need a term which denotes the sum of the densities of the images of the
affine partial mappings of a residue-class-wise affine mapping:

2.4 Definition Let f be a residue-class-wise affine mapping, and let m be
its modulus. Further assume that the restrictions of f to the residue classes
r(m) ∈ Z/mZ are given by n 7→ (ar(m)n + br(m))/cr(m). Then we define the
image density µimg(f) of f by

µimg(f) :=
∑

r(m)∈Z/mZ

µ(f(r(m))).

If Mult(f) 6= 0, as a consequence of Lemma 2.3, Assertion (1) we have
µimg(f) =

∑
r(m)∈Z/mZ cr(m)/(ar(m) · m). From this we immediately read off

that the image density of a residue-class-wise affine mapping with given mul-
tiplier and divisor can neither be arbitrary large nor arbitrary small, and
that the denominator of the fraction is bounded as well:

2.5 Lemma Given a residue-class-wise affine mapping f with Mult(f) 6= 0,
it holds 1/ Mult(f) 6 µimg(f) 6 Div(f) and Mod(f) ·Mult(f) ·µimg(f) ∈ N0.
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Stronger assertions hold under the assumption that the corresponding map-
ping is injective, surjective or even bijective:

2.6 Lemma Given a residue-class-wise affine mapping f , the following hold:

1. f is injective ⇒ µimg(f) 6 1.

2. f is surjective ⇒ µimg(f) > 1.

3. f is bijective ⇒ µimg(f) = 1.

In Assertion (1) and (2) equality holds for a mapping without constant affine
partial mappings if and only if it is bijective.

Proof: The assertions follow from the additivity of the density function and
from the setting µ(Z) := 1. �

We make use of the following property of non-injective residue-class-wise
affine mappings:

2.7 Lemma Assume that f is a non-injective residue-class-wise affine map-
ping and that there is no residue class on which f is constant. Then there
is a residue class r0(m0) and two disjoint residue classes r1(m1) and r2(m2)
of Z such that r0(m0) = f(r1(m1)) = f(r2(m2)).

Proof: Let m be the modulus of f . Since f is not injective, there are two
residue classes r̃1(m) and r̃2(m) whose images under f are not disjoint. Since
we have required that f is not constant on any residue class, f(r̃1(m)) and
f(r̃2(m)) are residue classes as well. Therefore r0(m0) := f(r̃1(m))∩f(r̃2(m))
is also a residue class. The preimages r1(m1) and r2(m2) of r0(m0) under the
affine mappings f |r̃1(m) resp. f |r̃2(m) are residue classes, too. They are disjoint
since they are subsets of distinct residue classes (mod m). �

Multiplying by a surjective, but not injective mapping increases the image
density:

2.8 Lemma Let f and g be surjective residue-class-wise affine mappings
without constant affine partial mappings, and assume that f is not injective.
Then µimg(f · g) > µimg(g).

Proof: By Lemma 2.7, there are a residue class r0(m0) and two disjoint
residue classes r1(m1) and r2(m2) such that f(r1(m1)) = f(r2(m2)) = r0(m0).
Let mg := Mod(g). Then the residue classes r0(mg) and r0(m0) intersect
nontrivially. Let r0(m) be their intersection. Due to the surjectivity of f we
have µimg(f ·g) > µimg(g)+µ(g(r0(m))) > µimg(g), which had to be shown. �
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Now we can prove the validity of our criterion:

2.9 Theorem Let f be a residue-class-wise affine mapping. If f is surjective
but not injective, then f is wild.

Proof: Assume that f is tame. Let m := lcmk∈N Mod(f (k)). Then the
restrictions f (k)|r(m) (k ∈ N) of powers of f to residue classes (mod m) are
affine. The images of the residue classes r(m) under the mappings f (k) are
either single residue classes as well, or (caused by constant affine partial
mappings) sets of cardinality 1. We have to distinguish two different cases:

1. The mapping f has a constant partial mapping f |r1(m) ≡ n. In this case,
due to the surjectivity of the mapping f and the choice of m there is
an infinite sequence r2(m), r3(m), r4(m), . . . of pairwise distinct residue
classes (mod m) such that ∀k ∈ N f (k)|rk(m) ≡ n. Since there are only
finitely many residue classes (mod m), this yields a contradiction.

2. The mapping f does not have a constant partial mapping. In this
case, we know from Lemma 2.8 that ∀k ∈ N µimg(f

(k+1)) > µimg(f
(k)).

By Lemma 2.5, Div(f (k)) is an upper bound on µimg(f
(k)). Since the

divisor of a residue-class-wise affine mapping divides its modulus, we
have Div(f (k)) 6 m. Using the ‘denominator bound’ from Lemma 2.5,
we conclude that the sequence (Mult(f (k)))k∈N is not bounded.

Let d := m + 2. We can choose k0 ∈ N and r1(m) ∈ Z/mZ such
that µ(f (k0)(r1(m))) < 1/md. By choice of m, the set f (k0)(r1(m)) =:
r0(m̃) is a residue class as well. Since the divisor of a residue-class-wise
affine mapping divides its modulus, we can conclude from Lemma 2.3,
Assertion (2) that ∀k ∈ N µ(f (k)(r0(m̃))) < 1/md−1. Using the method
described below, we show that there is an exponent e ∈ N such that
for any k ∈ N and any r(m) ∈ Z/mZ the equation

µ(f (e+k)(r(m))) <
1

m
(1)

holds:

1. Put i := 2.

2. Since the mapping f (k0) is surjective, there is an ri(m) ∈ Z/mZ
such that µ(f (k0)(ri(m)) ∩ ri−1(m)) > 1/m2. According to the
choice of m, for any k ∈ N0 the mappings f ((i−1)k0+k)|f (k0)(ri(m))

and f ((i−1)k0+k)|ri−1(m) are affine and differ at most by their sources.
Hence using this inequality one can conclude inductively that

µ(f (ik0)(ri(m))) 6 mi−1 · µ(f (k0)(r1(m))) < 1/md−(i−1)
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and that µ(f (ik0+k)(ri(m))) < 1/md−i. Thus in particular for i 6 m
no image of f (ik0)(ri(m)) under a power of f can have an intersection
of density > 1/m2 with any residue class rı̃(m).

3. If i < m, put i := i + 1 and continue with step (2), otherwise done.

Due to the last sentence of the description of step (2), the m residue
classes ri(m) ∈ Z/mZ which we get this way are pairwise distinct.
Hence Inequality (1) holds for e := m · k0. This is a contradiction to
the assumption that f is surjective. �

Three of the four possible combinations of (non-) injectivity and (non-) sur-
jectivity do not permit a conclusion on whether the respective residue-class-
wise affine mapping is tame or wild:

tame wild

not injective,
not surjective n 7→

{
2n if n ∈ 0(2),

2n + 2 if n ∈ 1(2).
n 7→

{
3n
2

if n ∈ 0(2),

2n + 2 if n ∈ 1(2).

injective,
not surjective

n 7→ 2n.
n 7→

{
3n
2

if n ∈ 0(2),

3n + 2 if n ∈ 1(2).

not injective,
surjective

Does not exist,
by Theorem 2.9. n 7→

{
n
2

if n ∈ 0(2),
3n+1

2
if n ∈ 1(2)

(cf. Conjecture 1.1).

bijective n 7→ n + 1.

n 7→


2n
3

if n ∈ 0(3),
4n−1

3
if n ∈ 1(3),

4n+1
3

if n ∈ 2(3)

(cf. [3], [7], [12]).
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