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Chapter 1

The Exercises

1.1 On Commutators and Derived Subgroups

1.1.1 Exercise

The derived subgroup G′ of a group G is defined as the group generated by all commutators
[a,b] := a−1b−1ab, where a,b ∈ G. In general, not all elements of the derived subgroup of a group
are actually commutators themselves. Find a group G of smallest possible order such that the set of
all commutators of elements of G does not form a group!

1.1.2 Hints

Commutators can be computed by the operation Comm, and the derived subgroup can be computed by
the operation DerivedSubgroup. The function Cartesian and the operations Set and AsList can
be helpful in this context as well. If you are lazy but patient, you may simply use CommutatorLength.
Otherwise, this exercise requires writing a couple of lines of GAP code. The wanted group has order
greater than 50, but less than 100.

For a solution, see Section 2.1.

1.2 On Outer Automorphisms Fixing Conjugacy Classes

1.2.1 Exercise

Is there a finite group which has an automorphism which is not inner, but which nevertheless fixes all
conjugacy classes setwise? – If so, then find an example of least possible order!

1.2.2 Hints

This exercise is slightly more difficult than that given in Section 1.1. Useful functions and operations
are AllGroups, AutomorphismGroup, IsInnerAutomorphism, IsConjugate, Image and AsList.
It is a good exercise to try to find a way to write down the group and the automorphism in a nice
and human-readable form. One possible way to achieve this is to determine a “nice” permutation
representation of the group, and to choose an automorphism with the desired property which fixes all
but one of the generators.

For a solution, see Section 2.2.

4
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1.3 Drawing the Ulam Spiral

1.3.1 Exercise

Write a GAP function which draws the Ulam spiral and saves the picture in a file!
The arguments of the function should be the size (width / height) of the picture to be drawn and

the name of the output file.

1.3.2 Hints

This is more or less just an easy programming exercise, which does not require particular mathematical
knowledge. Use the function NullMat to create a zero matrix over the field with two elements,
and use this matrix as a grid to draw the spiral. The RCWA package [Koh07b] provides a function
SaveAsBitmapPicture, which can be used to produce a picture file from the matrix.

For a solution, see Section 2.3.

1.4 Automorphism Group of the Smallest Projective Plane

1.4.1 Exercise

The automorphisms of a finite projective plane are determined by the permutations of the set of points
which move lines to lines. Thus, labelling the points with integers 1,2, . . . ,n, the automorphism group
can be described as a subgroup of the symmetric group Sn.

The smallest projective plane has 7 points and 7 lines. Any point is incident with 3 lines, and any
line is incident with 3 points. We label the points with integers 1,2, . . . ,7. Then the lines are given by
the sets g1 := {1,2,3}, g2 := {1,4,7}, g3 := {1,5,6}, g4 := {2,4,6}, g5 := {2,5,7}, g6 := {3,4,5}
and g7 := {3,6,7} of points which are incident with them.

Compute the automorphism group of the smallest projective plane!

1.4.2 Hints

A useful function in this context is SubgroupProperty. The actual determination of the group can be
done in one statement. Can you figure out the isomorphism type of the group by theoretical means?

For a solution, see Section 2.4.

1.5 Installing a Missing Method

1.5.1 Exercise

What happens when you enter the command Centre(AlternatingGroup(100)); in GAP? Are you
satisfied with the performance, given that the centre of a nonabelian simple group is always trivial and
that GAP knows that the alternating group of degree 100 is simple?

Probably not. – Thus improve the performance radically by implementing a method for Centre
for simple groups, which returns either the group itself or the trivial subgroup, depending on whether
the group is abelian or not!

http://en.wikipedia.org/wiki/Ulam_spiral
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1.5.2 Hints

Methods are installed with InstallMethod. The exercise is easy – basically all you need to do
is to look up in the documentation how this function is used. If your solution is correct, then
Centre(AlternatingGroup(100)); returns the trivial subgroup immediately, and Centre(G) still
computes the centre of a non-simple group G using methods implemented in the GAP Library.

For a solution, see Section 2.5.

1.6 Finding Good abc Triples

1.6.1 Exercise

Given a positive integer n, let rad(n) denote the product of distinct prime divisors of n. The abc
conjecture states that for any ε > 0 there is a constant Kε such that for any triple (a,b,c) of coprime
positive integers satisfying the equation a+b = c we have c < Kε rad(abc)1+ε .

A triple (a,b,c) of coprime integers satisfying a + b = c is called an abc triple if rad(abc) is less
than c. An abc triple (a,b,c) is called a good abc triple if it satisfies even ln(c)/ ln(rad(abc)) > 1.4.
The left-hand side of the inequality is sometimes called the ratio of the abc triple.

It can be shown easily that there are infinitely many abc triples, but if the abc conjecture holds,
there are only finitely many good abc triples.

Write a GAP function which finds all good abc triples (a,b,c) with given radical rad(abc) and
with c less than a given bound!

Can you find a new triple, which is not yet on Abderrahmane Nitaj’s list of known good abc
triples?

1.6.2 Hints

You can start by determining all positive integers less than the given bound all of whose prime factors
divide the given radical. This can be done much more efficiently than by the Sieve of Eratosthenes,
or even by looping over all integers in the range and factoring – it is easy and very elementary to
find out how. Then you can loop over all pairs of these integers, test whether they are coprime and
compute the ratio if they are. To compute the ratio, you need the operation Float which converts
integers and rationals to floating point numbers, and the function LOG_FLOAT which computes the
natural logarithm of a floating point number.

For a solution, see Section 2.6.

1.7 Automorphism Groups of Finite Graphs

1.7.1 Exercise

a) Determine all undirected graphs with 6 vertices up to isomorphism! – How many isomorphism
types of such graphs are there?

The graphs should be represented as sets of edges, where the edges should be written as sets of
two vertices, each.

Example: In this representation, the graphs [[1,2],[1,6],[2,3],[3,4],[4,5],[5,6]] and
[[1,5],[1,6],[2,4],[2,6],[3,4],[3,5]] are both isomorphic to the regular hexagon.

http://en.wikipedia.org/wiki/Abc_conjecture
http://en.wikipedia.org/wiki/Abc_conjecture
 http://www.math.unicaen.fr/~nitaj/tableabc.pdf
 http://www.math.unicaen.fr/~nitaj/tableabc.pdf
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b) Write a function GraphAutomorphismGroup(Gamma,n) which computes the automorphism
group of the graph Gamma with n vertices. – The automorphisms are precisely the permutations
of the set of vertices which move edges to edges.

Note that the cardinality n of the set of vertices needs to be specified, as there may be isolated
vertices.

c) Find out which of the (up to conjugation in S6) 16 transitive permutation groups of degree 6
occur as automorphism groups of graphs with 6 vertices! – How do the corresponding graphs
look like?

1.7.2 Hints

ad a)
You can obtain the set of all graphs with n vertices in the suggested notation by
Combinations(Combinations([1..n],2));. Then you need to find a suitable group ac-
tion on this set such that two graphs are isomorphic if and only if they lie in the same orbit.
Useful operations are Orbits and Representative.

ad b)
In principle you can implement a fancy algorithm here, but for our purposes a very basic one
is perfectly sufficient. First find out how to check whether a given permutation of the vertices
induces a graph automorphism. Then you can use SubgroupProperty to determine the group
formed by all such permutations.

ad c)
Given Part a) and b), this is more or less straightforward. Useful functions / operations are
AllTransitiveGroups, NrMovedPoints and TransitiveIdentification.

For a solution, see Section 2.7.

1.8 Enumerating Paths

1.8.1 Exercise

Answer the following questions using GAP:

a) In how many ways can 1 ∈ S4 be written as a product of exactly 100 transpositions?

b) In how many ways can a horse cross the chess board from the upper left to the lower right corner
with exactly 100 moves?

1.8.2 Hints

Construct a matrix x ∈ Zn×n with ones at suitable positions and zeros everywhere else and compute
powers. For Part a), choose n := 24, and for Part b), choose n := 82 = 64. Useful functions are e.g.
NullMat, SymmetricGroup, Combinations, Cartesian and Position.

For a solution, see Section 2.8.
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1.9 Wieferich Primes

1.9.1 Exercise

By Fermat’s little theorem, for any prime number p we have p|2p−1−1. A prime number p is called
a Wieferich prime if it satisfies even p2|2p−1−1.

Write a GAP function which checks whether a given positive integer is a Wieferich prime, and try
to find as many Wieferich primes as you can!

1.9.2 Hints

Writing the GAP function is easy. Use PowerModInt instead of first computing 2p−1 and then re-
ducing modulo p2. Two Wieferich primes can be found easily, but finding a third one is at least
hard.

For a solution, see Section 2.9.

1.10 Counting Words in a File

1.10.1 Exercise

Write a GAP function which, given a filename, returns a word distribution statistics. The function
should return a list with entries of the form [ "word", 237 ] for any word in the file, indicating the
word and the number of times it occurs. A “word” in our sense is a sequence of letters with no non-
letter characters in between, i.e. it does not need to be a dictionary word. Can you put your function
into one line with no more than 80 characters?

1.10.2 Hints

You will probably need the operation Collected. Further, the functions StringFile and
WordsString from the GAPDoc package [LN06] will be useful.

For a solution, see Section 2.10.

1.11 Non-Metabelian p-Groups

1.11.1 Exercise

A group G is called metabelian if it has an abelian normal subgroup N such that the quotient G/N is
abelian as well. Further, a group is called a p-group if its order is a power of a prime.

Find a non-metabelian p-group of least possible order!

1.11.2 Hints

First determine conceivable orders of non-metabelian groups by means of theory. Then just run
a brute-force search over the groups of the smallest few of these orders in the Small Groups Li-
brary [BEO07]. Useful functions / operations are AllGroups, DerivedSubgroup and IsAbelian.
For a solution, see Section 2.11.

http://en.wikipedia.org/wiki/Wieferich_prime 
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1.12 The Growth of the Sum-of-Divisors Function

1.12.1 Exercise

Let σ denote the sum-of-divisors function. Given a positive integer n, let H(n) := ∑
n
k=1 1/k be the nth

harmonic number, and put B(n) := H(n)+ ln(H(n)) · eH(n).
Examples are σ(24) = 60 and B(24)≈ 61.7575, as well as σ(60) = 168 and B(60)≈ 170.977.
Can you find an integer n > 1 such that σ(n) is larger than B(n)?

1.12.2 Hints

In GAP, σ(n) can be computed by Sigma(n). Use the operation Float to convert integers and
rationals to floating point numbers, and use the functions LOG_FLOAT and EXP_FLOAT to compute
logarithms and to evaluate the exponential function, respectively. Be prepared that finding an integer
n > 1 such that σ(n) is larger than B(n) is not easy.

For a solution, see Section 2.12.

1.13 Pell’s Equation

1.13.1 Exercise

Pell’s equation is any Diophantine equation of the form x2−ny2 = 1, where n is a nonsquare integer.
Write a GAP function which takes an argument n and returns the smallest solution of the equation

x2−ny2 = 1 in positive integers!
This solution is called the fundamental solution. Your function should return for example the

answer for n = 421 very quickly.

1.13.2 Hints

Useful functions in this context are ContinuedFractionExpansionOfRoot and
ContinuedFractionApproximationOfRoot.

For a solution, see Section 2.13.

1.14 Automorphism Groups of Odd Order

1.14.1 Exercise

Obviously, the automorphism groups of both the trivial group and the cyclic group of order 2 are triv-
ial, and have therefore odd order. Find the smallest group of order greater than 2 whose automorphism
group has odd order!

1.14.2 Hints

First try to exclude the groups of even order by means of theory. Then run a brute-force search over
the Small Groups Library [BEO07]. Useful functions / operations in this context are AllGroups and
AutomorphismGroup.

For a solution, see Section 2.14.

http://en.wikipedia.org/wiki/Pell%27s_equation 
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1.15 Composite Sums

1.15.1 Exercise

Find an odd positive integer n such that n+2k is composite for any positive integer k! – Can you find
the least possible such n?

1.15.2 Hints

First perform a brute-force search to find candidates. Then try to verify whether these candidates
indeed have the desired property. A useful function in this context is OrderMod. In addition, it may
be worth to have a look at the ResClasses package [Koh07c], and there in particular at the function
ResidueClass. Finding a good candidate for the least possible number with the given property is
reasonably easy, but the verification that it is indeed the smallest one is computationally difficult.

For a solution, see Section 2.15.

1.16 Rational Points on the Unit Sphere

1.16.1 Exercise

Write a GAP function which computes all rational points on the unit sphere x2 + y2 + z2 = 1 which
correspond to solutions of the diophantine equation a2 +b2 + c2 = d2 with a, b and c not exceeding a
given bound. Further, your function should draw a picture showing the projection of one octant of the
sphere to the x-y-plane, where the rational points are marked by black pixels.

1.16.2 Hints

Just write a nested loop to determine the solutions. Note that the variables can be permuted, thus
you can assume a ≥ b ≥ c and generate the solutions not satisfying this inequality by permuting a, b
and c. This saves almost 5/6 of the time. Maybe a useful function in this context is Arrangements.
Create an empty grid over GF(2) by the function NullMat, invert it (i.e. replace zeros by ones)
and mark the solutions by zeros there. Finally, the RCWA package [Koh07b] provides a function
SaveAsBitmapPicture, which can be used to write the picture to a file.

For a solution, see Section 2.16.

1.17 Aliquot Sequences

1.17.1 Exercise

Given a positive integer n, the Aliquot sequence n = a1,a2,a3,a4, . . . starting at n is defined by ai+1 =
σ(ai)−ai, where σ denotes the sum-of-divisors function. We say that the Aliquot sequence starting
at n stops if there is an index i such that ai = 1, and we say that it runs into a cycle if there are distinct
indices i and j such that ai = a j.

Find out whether all Aliquot sequences starting at integers n < 100 either stop or run into cycles!
– Can you do the same for all Aliquot sequences starting at integers n < 200 or n < 300? Do you see
algorithmic problems, and of which kind are they?
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1.17.2 Hints

In GAP, σ(n) can be computed by Sigma(n). Computing σ(n) requires factoring n. For this, the
GAP Library method for the operation Sigma calls the GAP Library function FactorsInt directly.
This works for small n, but for larger n, FactorsInt will often give up and raise an error message
which suggests to use the FactInt package [Koh07a]. If you have loaded FactInt, you may find this
strange. However, this has nothing to do with FactInt, as this package does not get a chance to help
with factoring. You can make Sigma benefit from FactInt if you fetch the method for Sigma from
lib/numtheor.gi, put it into a separate file, replace FactorsInt by Factors, increase the method
rank to something like SUM_FLAGS and read this file into GAP. Alternatively you can make the change
directly in the GAP Library. Then you do not need to increase the method rank, but (as after every
Library change) you need to rebuild the completion files. For this, start GAP with option -N and enter
CreateCompletionFiles();.

For a solution, see Section 2.17.

1.18 The Q Sequence

1.18.1 Exercise

Hofstadter’s Q sequence is defined by Q1 = Q2 = 1 and Qn = Qn−Qn−1 +Qn−Qn−2 for n > 2.

a) Write a GAP function which takes an integer argument l and computes the first l terms of the
Q sequence.

b) Write a GAP function which plots the graph of the Q sequence.

1.18.2 Hints

ad a)
The Q sequence is defined recursively. Ask yourself the question why a recursive implementa-
tion is not a particularly good idea in this case, anyway.

ad b)
Use the function NullMat to create a zero matrix over the field with two elements, turn the
zeros into ones if you prefer a black graph on a white background to a white graph on a black
background, and use this matrix as a grid to draw the graph. The RCWA package [Koh07b]
provides a function SaveAsBitmapPicture, which can be used to produce a picture file from
the matrix.

For a solution, see Section 2.18.

1.19 A Quickly Growing Function

1.19.1 Exercise

Have a look at the following function, which takes as arguments three nonnegative integers and which
returns a positive integer:

 http://mathworld.wolfram.com/HofstadtersQ-Sequence.html
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GAP code

f := function ( i, j, k )

if i = 0 then

if j = 0

then if k = 0 then return 2; else return 2^f(i,j,k-1); fi;

else return f(i,j-1,f(i,j-1,k)); fi;

else

return f(i-1,f(i-1,j,k),f(i-1,j,k));

fi;

end;

Try to evaluate f for small values of i, j and k! – How far can you get? Can you evaluate f(1,1,1)
or f(2,2,2), or can you perhaps write down these values as non-recursive expressions?

The function f is still a computable function – recall however that there are functions which grow
faster than any computable function!

1.19.2 Hints

Some values this function takes: f(0,0,0) is 2, f(0,0,1) is 4, f(0,0,2) and f(0,1,0) are both 16,
f(0,0,3) is 65536, f(0,0,4) and f(0,1,1) are both 265536, f(0,0,5) is 2265536

, and already
f(1,1,1) is basically too large to be written down in a non-recursive way. The exercise asks just
for some experimentation – thus there is no solution given.

1.20 The 3n+1 Conjecture

1.20.1 Exercise

The 3n+1 conjecture, also known as Collatz conjecture, asserts that iterated application of the Collatz
mapping

T : Z−→ Z, n 7−→

{
n
2 if n is even,
3n+1

2 if n is odd

to any given positive integer eventually yields 1. This problem has been posed by Lothar Collatz in
the 1930’s, and it is still open today.

Investigate Collatz’ conjecture by means of computation with GAP, and try to find a proof or a
counterexample!

1.20.2 Hints

The 3n + 1 conjecture is generally believed to be true, but if it is false, this may be for two rea-
sons: firstly, there may be unbounded sequences, and secondly, there may be sequences which run
into cycles not containing 1. Jeffrey C. Lagarias has compiled a comprehensive annotated bibliog-
raphy [Lag07] on this conjecture. The GAP package RCWA [Koh07b] provides a large variety of
methods to compute with mappings like the Collatz mapping. We show just how to enter the Collatz
mapping and how to compute the sequences we are interested in:



GAP Exercises 13

GAP session log

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);

<rcwa mapping of Z with modulus 2>

gap> SetName(T,"T");

gap> Display(T);

Rcwa mapping of Z with modulus 2

n mod 2 | n^T

------------------------------------+------------------------------------

0 | n/2

1 | (3n + 1)/2

gap> Trajectory(T,15,[1]);

[ 15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1 ]

gap> Trajectory(T,27,[1]);

[ 27, 41, 62, 31, 47, 71, 107, 161, 242, 121, 182, 91, 137, 206, 103,

155, 233, 350, 175, 263, 395, 593, 890, 445, 668, 334, 167, 251, 377,

566, 283, 425, 638, 319, 479, 719, 1079, 1619, 2429, 3644, 1822, 911,

1367, 2051, 3077, 4616, 2308, 1154, 577, 866, 433, 650, 325, 488, 244,

122, 61, 92, 46, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1 ]

There is (of course!) no solution given for this exercise.



Chapter 2

The Solutions

2.1 On Commutators and Derived Subgroups (Solution)

This is a suggested solution for Exercise 1.1.
There is a function CommutatorLength(G), which returns the minimal number n such that each

element in the derived subgroup of the group G can be written as a product of (at most) n commutators
of elements of G . For the groups we are looking for, this function returns a value greater than 1.
However, CommutatorLength is reasonably slow and we need to check many groups. Therefore we
write an own little function as follows:

GAP code

CommutatorsFormGroup := G -> Length(Set(Cartesian(AsList(G),AsList(G)),

t -> Comm(t[1],t[2])))

= Size(DerivedSubgroup(G));

Of course this function uses just a brute-force approach, and you might find it worth to look for a better
algorithm to check whether the commutators form a subgroup – but for our purposes it is sufficient as
it stands. Now we simply need to loop over the groups stored in the Small Groups Library [BEO07]
until we find one for which this function returns false:

GAP session log

gap> n := 0;;

gap> repeat

> n := n + 1; Print("n = ",n,"\n");

> G := First(AllGroups(n),G->not CommutatorsFormGroup(G));

> until G <> fail;

Certainly we could think about which groups we can already exclude by means of theory, but for our
purposes here this turns out to be not necessary. We obtain the following:

GAP session log

gap> IdGroup(G);

[ 96, 3 ]

gap> StructureDescription(G);

"((C4 x C2) : C4) : C3"

14
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The possible orders ≤ 256 of groups which have the desired property are 96, 128, 144, 162, 168, 192,
216, 240, 256. A low-degree permutation group with our property is

GAP session log

gap> G := Group((1,3)(2,4),(5,7)(6,8),(9,11)(10,12),(13,15)(14,16),

> (1,3)(5,7)(9,11),(1,2)(3,4)(13,15),(5,6)(7,8)(13,14)(15,16),

> (9,10)(11,12));;

gap> CommutatorLength(G);

2

2.2 On Outer Automorphisms Fixing Conjugacy Classes (Solution)

This is a suggested solution for Exercise 1.2.
We perform a brute-force search. For this we write straightforward code that uses a “problem-

oriented” approach:
GAP session log

gap> n := 1;;

gap> repeat

> Print(n,"\n");

> G := First(AllGroups(n),

> G -> not IsAbelian(G)

> and ForAny(AsList(AutomorphismGroup(G)),

> aut -> not IsInnerAutomorphism(aut)

> and ForAll(AsList(G),

> g->IsConjugate(G,g,

> Image(aut,g)))));

> n := n + 1;

> until G <> fail;

This loop runs a couple of minutes. This is likely less than the additional time it would take to exclude
many groups from the search by means of theory or to write code which tests given groups faster.
Nevertheless you might be interested in looking at this question from a theoretical point of view and
in trying to find out more about the structure of groups which permit non-inner conjugacy class fixing
automorphisms.

We obtain the following:
GAP session log

gap> G;

<pc group of size 32 with 5 generators>

gap> IdGroup(G);

[ 32, 43 ]

We would like to find a nice faithful permutation representation of G which permits us to see how
our automorphism looks like. For this purpose we look for suitable subgroups, and let G act from the
right on right cosets. Since 32 > 4!, there is no hope to find a faithful permutation representation of
degree 4. However we can find one of degree 8:
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GAP session log

gap> S4 := Filtered(List(ConjugacyClassesSubgroups(G),Representative),

> S->Size(S)=4);;

gap> permreps := Set(Filtered(List(S4,S->Action(G,RightCosets(G,S),OnRight)),

> H->Size(H)=32));

[ Group([ (1,2)(3,8)(4,6)(5,7), (2,8)(3,7)(5,6), (2,6)(5,8),

(1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8) ]) ]

gap> G := permreps[1];;

gap> ConjugacyClasses(G);

[ ()^G, (2,5)(3,7)(6,8)^G, (2,6)(5,8)^G, (2,8)(3,7)(5,6)^G,

(1,2)(3,8)(4,6)(5,7)^G, (1,2,3,5,4,6,7,8)^G, (1,2,4,6)(3,8,7,5)^G,

(1,2,7,8,4,6,3,5)^G, (1,3,4,7)(2,5,6,8)^G, (1,3,4,7)(2,8,6,5)^G,

(1,4)(2,6)(3,7)(5,8)^G ]

gap> G := G^(4,5);; # we want (1,2,3,4,5,6,7,8) in G

gap> List(ConjugacyClasses(G),Representative); # pick nicer generators ...

[ (), (2,4)(3,7)(6,8), (2,6)(4,8), (2,8)(3,7)(4,6), (1,2)(3,8)(4,7)(5,6),

(1,2,3,4,5,6,7,8), (1,2,5,6)(3,8,7,4), (1,2,7,8,5,6,3,4),

(1,3,5,7)(2,4,6,8), (1,3,5,7)(2,8,6,4), (1,5)(2,6)(3,7)(4,8) ]

gap> G = Group((1,2,3,4,5,6,7,8),(2,4)(3,7)(6,8),(2,8)(3,7)(4,6));

true

Now let’s have a look at our automorphism:
GAP session log

gap> a := (1,2,3,4,5,6,7,8);; b := (2,4)(3,7)(6,8);; c := (2,8)(3,7)(4,6);;

gap> G := Group(a,b,c);; # the nice representation determined above

gap> A := AutomorphismGroup(G);

<group of size 64 with 6 generators>

gap> auts := Filtered(AsList(A),

> aut -> not IsInnerAutomorphism(aut)

> and ForAll(AsList(G),

> g -> IsConjugate(G,g,Image(aut,g))));;

gap> Length(auts); # there are 16 suitable aut's -- find the nicest of them:

16

gap> auts := Filtered(auts,aut->Image(aut,a)=a);; # those fixing a

gap> Length(auts);

4

gap> auts := Filtered(auts,aut->Image(aut,b)=b);; # those fixing b as well

gap> Length(auts);

1

gap> aut := auts[1];; # this one fixes a and b, and moves the generator c

gap> c; Image(aut,c);

(2,8)(3,7)(4,6)

(1,5)(2,4)(6,8)

gap> c/Image(aut,c);

(1,5)(2,6)(3,7)(4,8)

gap> last = a^4; # our automorphism multiplies c by a^4

true

gap> aut = GroupHomomorphismByImages(G,G,[a,b,c],[a,b,a^4*c]); # check

true
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2.3 Drawing the Ulam Spiral (Solution)

This is a suggested solution for Exercise 1.3.
We can write the function as follows:

GAP code

UlamSpiral := function ( size, filename )

local spiral, smallprimes, n, p, r,

middle, edgelength, edgepos, direction, i, j, zero, one;

smallprimes := Filtered([2..size],IsPrimeInt);

spiral := NullMat(size,size,GF(2));

if size mod 2 = 0 then middle := [size/2,size/2];

else middle := [(size + 1)/2,(size + 1)/2]; fi;

zero := Zero(GF(2)); one := One(GF(2));

spiral[middle[1]][middle[2]] := one;

for p in smallprimes do

i := middle[1]; j := middle[2];

edgelength := 2; edgepos := 1; direction := 0; r := 1;

for n in [2..size^2] do

if direction = 0 then j := j + 1;

elif direction = 1 then i := i + 1;

elif direction = 2 then j := j - 1;

elif direction = 3 then i := i - 1; fi;

r := r + 1;

edgepos := edgepos + 1;

if r = p then

if n > p then spiral[i][j] := one; fi;

r := 0;

fi;

if edgepos = edgelength then

direction := (direction + 1) mod 4;

if direction in [0,2] then edgelength := edgelength + 1; fi;

edgepos := 1;

fi;

od;

od;

SaveAsBitmapPicture(spiral,filename);

end;

In this solution, we do a Sieve of Eratosthenes inside the spiral. This saves some memory, but doing
the sieving before drawing the spiral would be faster.
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2.4 Automorphism Group of the Smallest Projective Plane (Solution)

This is a suggested solution for Exercise 1.4.
We determine the requested automorphism group as a subgroup of the symmetric group of de-

gree 7 as follows:
GAP session log

gap> p7 := [[1,2,3],[1,4,7],[1,5,6],[2,4,6],[2,5,7],[3,4,5],[3,6,7]];;

gap> G := SubgroupProperty(SymmetricGroup(7),x->Set(p7,g->Set(g,p->p^x))=p7);

Group([ (2,6)(3,5), (2,5)(3,6), (2,5,7)(3,6,4), (1,2,5,6,4,3,7) ])

gap> StructureDescription(G);

"PSL(3,2)"

The group G is isomorphic to PSL(3,2) since the smallest projective plane is the one over the field
GF(2) with 2 elements, and since the group PSL(n,q) is defined as the automorphism group of the
projective space of affine dimension n (i.e. of projective dimension n−1) over GF(q). Our approach
works since all groups we are dealing with are small, thus SubgroupProperty is practical.

2.5 Installing a Missing Method (Solution)

This is a suggested solution for Exercise 1.5.
We can implement the needed method as follows:

GAP code

InstallMethod( Centre, "for simple groups", true, [ IsSimpleGroup ], 50,

function( G )

if IsAbelian( G ) then return G;

else return TrivialSubgroup( G ); fi;

end );

We set the rank to 50 to make GAP’s method selection choose this method in cases where multiple
methods are applicable.

2.6 Finding Good abc Triples (Solution)

This is a suggested solution for Exercise 1.6.
We can write the function as follows:

GAP code

abcTriplesByRadical := function ( radical, bound )

local triples, values, values_last, factors, a, b, c, rad_abc, ratio;

factors := Union(Factors(radical),[1]);

values := [1];

repeat

values_last := values;
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values := Filtered(Union(List(factors,p->values*p)),n->n<bound);

until values = values_last;

triples := [];

for a in values do

for b in values do

if b >= a then break; fi;

if a + b in values and Gcd(a,b) = 1 then

c := a + b;

rad_abc := Product(Set(Factors(a*b*c)));

ratio := LOG_FLOAT(Float(c))/LOG_FLOAT(Float(rad_abc));

if ratio > 7/5 then Add(triples,[a,b,c]); fi;

fi;

od;

od;

return triples;

end;

In the first loop we determine all positive integers less than bound all of whose prime factors divide
radical . For this we neither perform a loop over all integers in the range from 1 to bound nor we
factor integers. In the nested loop afterwards we determine the abc triples by a brute-force search.

We obtain for example the following:
GAP session log

gap> abcTriplesByRadical( 2 * 3 * 5 * 7, 10000 );

[ [ 125, 3, 128 ], [ 2400, 1, 2401 ], [ 4374, 1, 4375 ] ]

gap> abcTriplesByRadical( 2 * 3 * 23 * 109, 10^7 );

[ [ 6436341, 2, 6436343 ] ]

The latter is currently the best known abc triple. Its ratio is ln(c)/ ln(rad(abc))≈ 1.62991.
A more elaborate method to search for good abc triples is described in [Dok03].

2.7 Automorphism Groups of Finite Graphs (Solution)

This is a suggested solution for Exercise 1.7.

ad a)
We let the symmetric group of the set of vertices act on the set of all graphs with the given num-
ber of vertices. The orbits under that action are the isomorphism classes. As said in the hints, we
obtain the set of all graphs with n vertices by Combinations(Combinations([1..n],2)).
We can write a GAP function which takes an argument n and which returns a set of represen-
tatives for the isomorphism classes of graphs with n vertices:

GAP code

AllGraphs := n -> List(Orbits(SymmetricGroup(n),

Combinations(Combinations([1..n],2)),

function(Gamma,g)

return Set(Gamma,k->OnSets(k,g));

end),



GAP Exercises 20

Representative);

For n = 1, 2, 3, 4, 5 and 6, we obtain 1, 2, 4, 11, 34 and 156 graphs, respectively. We observe a
significant increase in runtime requirements between n = 5 and n = 6.

ad b)
We can write the GAP function as follows:

GAP code

GraphAutomorphismGroup := function( Gamma, n )

return SubgroupProperty(SymmetricGroup(n),

g -> Set(Gamma,k->OnSets(k,g)) = Set(Gamma));

end;

Of course we could put much more effort into writing such a function in order to obtain a
satisfactory performance also for reasonably large graphs – but for our purposes the given one
is already good enough.

ad c)
We write a GAP function which determines all transitive permutation groups of given degree n
which occur as automorphism groups of graphs:

GAP code

TransitiveGraphAutomorphismGroups := function( n )

local graphs, groups;

graphs := AllGraphs(n);

groups := Filtered(List(graphs,Gamma->GraphAutomorphismGroup(Gamma,n)),

G -> IsTransitive(G,[1..n]));

return AllTransitiveGroups(NrMovedPoints,n)

{Set(groups,TransitiveIdentification)};

end;

As often, it is possible to abridge this function without performance loss:
GAP code

TransitiveGraphAutomorphismGroups :=

n -> AllTransitiveGroups(NrMovedPoints,n)

{Set(Filtered(List(AllGraphs(n),

Gamma->GraphAutomorphismGroup(Gamma,n)),

G -> IsTransitive(G,[1..n])),

TransitiveIdentification)};

In general one needs to be a bit careful to avoid computing the same things again and again,
to avoid filling up the memory with junk objects and to recognize other possible sources of
performance problems when one shrinks functions in such a way.
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We obtain the following:
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GAP session log

gap> TransitiveGraphAutomorphismGroups(3);

[ S3 ]

gap> TransitiveGraphAutomorphismGroups(4);

[ D(4), S4 ]

gap> TransitiveGraphAutomorphismGroups(5);

[ D(5) = 5:2, S5 ]

gap> TransitiveGraphAutomorphismGroups(6);

[ D(6) = S(3)[x]2, 2S_4(6) = [2^3]S(3) = 2 wr S(3),

F_36(6):2 = [S(3)^2]2 = S(3) wr 2, S6 ]

gap> List(last, Size);

[ 12, 48, 72, 720 ]

gap> List(last2, GeneratorsOfGroup);

[ [ (1,2,3,4,5,6), (1,4)(2,3)(5,6) ], [ (3,6), (1,3,5)(2,4,6), (1,5)(2,4) ],

[ (2,4,6), (2,4), (1,4)(2,5)(3,6) ], [ (1,2,3,4,5,6), (1,2) ] ]

gap> List(last3, StructureDescription);

[ "D12", "C2 x S4", "(S3 x S3) : C2", "S6" ]

Now we determine the corresponding graphs. Since the automorphism group of a graph is
invariant under taking the complement, we can restrict our considerations to graphs with at
most [1

2 ·
(6

2

)
] = 7 edges – complements of solutions are then solutions as well.

GAP session log

gap> HomogeneousGraphs :=

> Filtered(AllGraphs(6),

> Gamma -> Length(Gamma) <= 7 and

> IsTransitive(GraphAutomorphismGroup(Gamma,6),

> [1..6]));

[ [ ], [ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 4, 5 ], [ 4, 6 ], [ 5, 6 ] ],

[ [ 1, 2 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 4, 6 ], [ 5, 6 ] ],

[ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ] ] ]

gap> List(HomogeneousGraphs, Gamma -> Size(GraphAutomorphismGroup(Gamma, 6)));

[ 720, 72, 12, 48 ]

Thus for the dihedral group of order 12 we get the hexagon, for C2 oS3 we get the graph con-
sisting of 3 disconnected edges, for S3 oC2 we get the graph consisting of 2 separate triangles,
and for S6 we get the empty graph.

There is a GAP package GRAPE [Soi02], which is dedicated to computations with graphs.

2.8 Enumerating Paths (Solution)

This is a suggested solution for Exercise 1.8.

ad a)
We can write the following function to determine a suitable x ∈ Z24×24:
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GAP code

TranspositionMatrixSn := function ( n )

local x, Sn, transpositions, line, g, t;

Sn := AsList(SymmetricGroup(n));

transpositions := List(Combinations([1..n],2),t->(t[1],t[2]));

x := [];

for g in Sn do

line := ListWithIdenticalEntries(Factorial(n), 0);

for t in transpositions do line[Position(Sn,g*t)] := 1; od;

Add(x, line);

od;

return x;

end;

The lines and columns of the matrix correspond to the elements 1 = g1, . . . ,g24 of S4, and it is

xi j =

{
1 if there is a transposition t such that gi · t = g j,

0 otherwise.

It is easy to check that (xn)i j is the number of ways to take gi to g j by multiplication from the
right by n transpositions. Therefore we get the solution as follows:

GAP session log

gap> x := TranspositionMatrixSn(4);; y := x^100;; y[1][1];

54443218625005908841390855596504818378095309207030310578760502581913955860480

ad b)
We can write the following function to determine a suitable x ∈ Z64×64:

GAP code

HorsesMatrix := function ( )

local x, board, moves, m, i, j;

x := [];

for i in [1..8] do

for j in [1..8] do

board := NullMat(8,8);

moves := [[i-2,j-1], [i-2,j+1], [i-1,j-2], [i-1,j+2],

[i+2,j+1], [i+2,j-1], [i+1,j+2], [i+1,j-2]];

for m in Intersection(moves,Cartesian([1..8],[1..8]))

do board[m[1]][m[2]] := 1; od;

Add(x,Flat(board));

od;

od;

return x;
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end;

We proceed analogous to Part a). Here the lines and columns of the correspond to the 64 squares
of the chess board, and the matrix is filled with zeros and ones in such a way that xi j = 1 if and
only if the horse can jump from square i to square j in one move. Similar as above, we get the
solution as follows:

GAP session log

gap> x := HorsesMatrix();;

gap> y := x^100;; y[1][64];

2593244602149234588139078903115618952040745476069710377506002611030781169300

2.9 Wieferich Primes (Solution)

This is a suggested solution for Exercise 1.9.
We can write the function as follows:

GAP code

IsWieferichPrimeInt := p -> IsPrimeInt(p) and PowerModInt(2,p-1,p^2) = 1;

The first two Wieferich primes can be found very quickly:
GAP session log

gap> Filtered([1..10000],IsWieferichPrimeInt);

[ 1093, 3511 ]

However, presently no third Wieferich prime is known. In case there is one, it must be greater than
1.25 ·1015 (cf. McIntosh 2004).

Assuming “equidistribution” of the residues (2p−1−1)/p mod p, one might argue that the “prob-
ability” of a prime p to be a Wieferich prime should be about 1/p. Since the series ∑p prime 1/p
diverges, this would suggest that there are infinitely many Wieferich primes. More concisely, one
would expect that there are roughly ln(ln(n)) Wieferich primes less than a given bound n. Following
these speculations, the expected number of Wieferich primes below the current bound of 1.25 · 1015

would be 3.548, while the actual number is 2. Obviously no reasonable statistical conclusions can be
made from that difference.

Well – when trying random primes, it seems that you might perhaps have a little chance of finding
a new Wieferich prime!

2.10 Counting Words in a File (Solution)

This is a suggested solution for Exercise 1.10.
We can write the function as follows:

 http://www.loria.fr/~zimmerma/records/Wieferich.status
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GAP code

WordCount := filename -> Collected(WordsString(StringFile(filename)));

2.11 Non-Metabelian p-Groups (Solution)

This is a suggested solution for Exercise 1.11.
Let p be a prime. It is well-known that groups of order p or p2 are always abelian, and that groups

of prime-power order are solvable. Therefore a non-metabelian p-group must at least have order p6.
Further it is easy to see that a group is metabelian if and only if its derived subgroup is abelian. Thus
we can proceed as follows:

GAP session log

gap> G := First( AllGroups( 64), G -> not IsAbelian( DerivedSubgroup(G) ) );

fail

gap> G := First( AllGroups(128), G -> not IsAbelian( DerivedSubgroup(G) ) );

<pc group of size 128 with 7 generators>

gap> IdGroup(G);

[ 128, 134 ]

gap> StructureDescription(G);

"((C4 : C8) : C2) : C2"

gap> StructureDescription( DerivedSubgroup(G) );

"C2 x D8"

There is a complete classification of the positive integers n such that all groups of order n are
metabelian. See [Paz80].

2.12 The Growth of the Sum-of-Divisors Function (Solution)

This is a suggested solution for Exercise 1.12.
We can compute floating point approximations for H(n) and B(n) in GAP as follows:

GAP code

H := n -> Sum([1..n],i->Float(1/i));

B := n -> H(n) + LOG_FLOAT(H(n)) * EXP_FLOAT(H(n));

We obtain for example
GAP session log

gap> List( [ 1 .. 60 ], n -> B(n) - Sigma(n) );

[ 0, 0.317169, 1.62453, 0.977983, 4.38227, 0.834179, 7.32927, 2.86332,

7.43259, 5.03387, 13.6644, 0.321837, 17.0041, 9.70942, 12.4362, 8.1831,

23.9489, 5.73238, 27.5327, 8.34888, 21.1802, 20.0258, 34.8851, 1.7575,

33.6424, 25.5393, 30.4477, 17.3671, 46.2972, 7.2375, 50.1877, 22.1475,

40.1165, 37.0945, 46.0811, 6.0761, 62.0793, 43.0903, 50.1091, 19.1353,

70.1688, 19.2093, 74.2568, 37.311, 46.3717, 55.4389, 82.5122, 9.59174,
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79.6772, 46.7685, 70.8655, 47.9681, 95.0762, 32.1896, 83.3082, 38.432,

81.5609, 74.6946, 107.833, 2.97668 ]

However we cannot answer the question whether there is a positive integer n such that σ(n)> B(n) – in
fact, Jeffrey C. Lagarias [Lag02] has shown that this question is equivalent to the Riemann hypothesis!

2.13 Pell’s Equation (Solution)

This is a suggested solution for Exercise 1.13.
We can write the function as follows:

GAP code

FundamentalSolutionOfPellsEquation := function ( n )

local x, periodlength, approx;

if n = RootInt(n,2)^2 then return fail; fi;

x := Indeterminate(Integers);

periodlength := Length(ContinuedFractionExpansionOfRoot(x^2-n,0)) - 1;

if periodlength mod 2 = 0

then approx := ContinuedFractionApproximationOfRoot(x^2-n, periodlength);

else approx := ContinuedFractionApproximationOfRoot(x^2-n,2*periodlength);

fi;

return [ NumeratorRat(approx), DenominatorRat(approx) ];

end;

First we determine the length of the period of the continued fraction expansion of the square root
of n . Then we determine the fundamental solution of Pell’s equation by taking the numerator and the
denominator of a suitable continued fraction approximation of that square root (note the dependency
on the parity of the period length!). Examples are

GAP session log

gap> FundamentalSolutionOfPellsEquation(2);

[ 3, 2 ]

gap> FundamentalSolutionOfPellsEquation(5);

[ 9, 4 ]

gap> FundamentalSolutionOfPellsEquation(13);

[ 649, 180 ]

gap> FundamentalSolutionOfPellsEquation(15);

[ 4, 1 ]

gap> FundamentalSolutionOfPellsEquation(61);

[ 1766319049, 226153980 ]

... and for n = 421 we obtain
GAP session log

gap> FundamentalSolutionOfPellsEquation(421);

 http://en.wikipedia.org/wiki/Riemann_Hypothesis


GAP Exercises 27

[ 3879474045914926879468217167061449, 189073995951839020880499780706260 ]

2.14 Automorphism Groups of Odd Order (Solution)

This is a suggested solution for Exercise 1.14.
It suffices to look at groups of odd order: Assume that G is a group of even order, and let G2 be

its Sylow 2-subgroup. If G2 is not a subgroup of the centre of G, then already the inner automorphism
group has even order. If it is a subgroup of the centre of G, then we have G = G2×G2′ , and therefore
Aut(G) = Aut(G2) × Aut(G2′). In this case, already the automorphism group of G2′ has odd order,
and G is not the smallest group having this property.

We perform a brute-force search:
GAP session log

gap> n := 3;;

gap> repeat

> Print(n,"\n");

> G := First(AllGroups(n),G->Size(AutomorphismGroup(G)) mod 2 = 1);

> n := n + 2;

> until G <> fail;

This loop runs for quite a while. We obtain the following:
GAP session log

gap> G;

<pc group of size 729 with 6 generators>

gap> IdGroup(G);

[ 729, 31 ]

gap> AutomorphismGroup(G);

<group of size 19683 with 9 generators>

gap> StructureDescription(DerivedSubgroup(G));

"C9"

gap> StructureDescription(G/DerivedSubgroup(G));

"C9 x C9"

The result that 36 is the smallest order of a group of more than 2 elements with an odd order automor-
phism group has first been obtained in [MS95].

2.15 Composite Sums (Solution)

This is a suggested solution for Exercise 1.15.
First we look for odd integers n such that any sum n+2k for “small” k has a “small” prime divisor:

GAP session log

gap> m := Product(Primes);;

gap> Filtered([1,3..99999],n->First([0..500],k->Gcd(n+2^k,m)=1)=fail);
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[ 78557 ]

Now our goal is to find out whether in fact all sums 78557+2k are composite.
For this, we first determine the smallest prime factors of the numbers 78557 + 2k for “small”

values of k. Then we find out for which k these primes pi divide 78557 + 2k. The set of such k is
the set of positive integers in a residue class modulo the order of 2 (mod pi). Finally we form the
union of the residue classes we obtain, and check whether it equals Z (this needs the ResClasses
package [Koh07c]):

GAP session log

gap> primes := Set([1..100],k->Minimum(Factors(Gcd(78557+2^k,m))));

[ 3, 5, 7, 13, 19, 37, 73 ]

gap> m_i := List(primes,p->OrderMod(2,p));

[ 2, 4, 3, 12, 18, 36, 9 ]

gap> r_i := List([1..Length(primes)],

> i->First([0..m_i[i]-1],k->(78557+2^k) mod primes[i] = 0));

[ 0, 3, 2, 1, 3, 9, 6 ]

gap> residueclasses := List(TransposedMat([r_i,m_i]),ResidueClass);

[ 0(2), 3(4), 2(3), 1(12), 3(18), 9(36), 6(9) ]

gap> Union(residueclasses);

Integers

Now we know that all sums 78557 + 2k for positive integers k are composite. But is 78557 indeed
the smallest odd integer such that n + 2k is composite for all positive integers k? – Likely yes, but
answering this question is computationally difficult:

GAP session log

gap> k_s := List([1,3..78557],

> n->First([1..1000],k->IsProbablyPrimeInt(n+2^k)));;

gap> k_s{[1..100]}; # small n are not a problem ...

[ 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 4, 2, 1, 2, 1, 1, 2, 1, 5, 2,

1, 3, 2, 1, 1, 8, 2, 1, 2, 1, 1, 4, 2, 1, 2, 1, 7, 2, 1, 3, 4, 2, 1, 2, 1,

1, 2, 1, 1, 2, 1, 7, 4, 5, 3, 4, 2, 1, 2, 1, 3, 2, 1, 1, 10, 3, 3, 2, 1, 1,

4, 2, 1, 4, 2, 1, 2, 1, 5, 2, 1, 3, 2, 1, 1, 4, 3, 3, 2, 1, 1, 2, 1, 1, 6 ]

gap> 2*Positions(k_s,fail)-1; # ... but larger n are:

[ 2131, 2491, 4471, 5101, 6379, 6887, 7013, 8447, 8543, 9833, 10711, 14033,

14551, 14573, 14717, 15623, 16519, 17659, 18527, 19081, 19249, 20209,

20273, 21143, 21661, 22193, 23147, 23221, 23971, 24953, 26213, 26491,

28433, 29333, 29777, 30197, 31111, 31369, 31951, 32449, 32513, 34429,

35461, 36083, 36721, 37217, 37967, 38387, 39079, 40291, 40351, 40613,

41453, 41693, 43579, 47269, 48091, 48331, 48527, 48859, 48961, 49279,

49577, 50839, 52339, 53119, 53359, 56717, 57083, 59071, 60443, 60451,

60947, 60961, 62029, 63691, 64133, 64643, 65033, 65089, 65719, 67607,

69593, 69709, 70321, 72679, 73373, 73583, 75353, 75841, 77041, 77783,

77899, 78557 ]

Using a bound larger than 1000 for k, it is possible to eliminate many of the above values of n, but
eliminating all of them except of 78557 seems hard.
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See also the related term Sierpinski number, and the corresponding distributed computing project
Seventeen or bust.

The interested reader might have a look at the similar problem with Fibonacci numbers instead of
powers of 2.

2.16 Rational Points on the Unit Sphere (Solution)

This is a suggested solution for Exercise 1.16.
The function can be written as follows:

GAP code

RationalPointsOnUnitSphere := function ( max_abc, size, filename )

local picture, solutions, a, b, c, d, sum,

pixelcoords, mirror, zero, one, i, j;

zero := Zero(GF(2)); one := One(GF(2)); # create a white picture:

picture := NullMat(size,size,GF(2));

for i in [1..size] do for j in [1..size] do picture[i][j] := one; od; od;

solutions := 0;

for a in [1..max_abc] do

Print("a = ",a,", #solutions = ",solutions,"\n");

for b in [1..a] do

for c in [1..b] do

sum := a^2 + b^2 + c^2;

d := RootInt(sum);

if d^2 = sum then

pixelcoords := List( size * [a,b,c]/d, Int ) + 1;

for mirror in Arrangements([1..3],2) do

picture[pixelcoords[mirror[1]]][pixelcoords[mirror[2]]] := zero;

od;

solutions := solutions + 1;

fi;

od;

od;

od;

SaveAsBitmapPicture(picture,filename);

end;

With some patience, you can use this function to produce a picture like this.

2.17 Aliquot Sequences (Solution)

This is a suggested solution for Exercise 1.17.
We can write the following GAP function:

GAP code

AliquotSequence := function ( n )

http://en.wikipedia.org/wiki/Sierpinski_number 
 http://www.rechenkraft.net/wiki/index.php?title=Seventeen_or_bust
 http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/images/sphere1.gif
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local a, i;

a := [n]; i := 1;

while a[i] > 1 and not a[i] in a{[1..i-1]} do

a[i+1] := Sigma(a[i]) - a[i]; i := i + 1;

od;

return a;

end;

This yields the following:
GAP session log

gap> List([1..40],AliquotSequence);

[ [ 1 ], [ 2, 1 ], [ 3, 1 ], [ 4, 3, 1 ], [ 5, 1 ], [ 6, 6 ], [ 7, 1 ],

[ 8, 7, 1 ], [ 9, 4, 3, 1 ], [ 10, 8, 7, 1 ], [ 11, 1 ],

[ 12, 16, 15, 9, 4, 3, 1 ], [ 13, 1 ], [ 14, 10, 8, 7, 1 ],

[ 15, 9, 4, 3, 1 ], [ 16, 15, 9, 4, 3, 1 ], [ 17, 1 ], [ 18, 21, 11, 1 ],

[ 19, 1 ], [ 20, 22, 14, 10, 8, 7, 1 ], [ 21, 11, 1 ],

[ 22, 14, 10, 8, 7, 1 ], [ 23, 1 ], [ 24, 36, 55, 17, 1 ], [ 25, 6, 6 ],

[ 26, 16, 15, 9, 4, 3, 1 ], [ 27, 13, 1 ], [ 28, 28 ], [ 29, 1 ],

[ 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1 ], [ 31, 1 ],

[ 32, 31, 1 ], [ 33, 15, 9, 4, 3, 1 ], [ 34, 20, 22, 14, 10, 8, 7, 1 ],

[ 35, 13, 1 ], [ 36, 55, 17, 1 ], [ 37, 1 ], [ 38, 22, 14, 10, 8, 7, 1 ],

[ 39, 17, 1 ], [ 40, 50, 43, 1 ] ]

gap> List([1..275],n->Length(AliquotSequence(n)));

[ 1, 2, 2, 3, 2, 2, 2, 3, 4, 4, 2, 7, 2, 5, 5, 6, 2, 4, 2, 7, 3, 6, 2, 5, 3,

7, 3, 2, 2, 15, 2, 3, 6, 8, 3, 4, 2, 7, 3, 4, 2, 14, 2, 5, 7, 8, 2, 6, 4,

3, 4, 9, 2, 13, 3, 5, 3, 4, 2, 11, 2, 9, 3, 4, 3, 12, 2, 5, 4, 6, 2, 9, 2,

5, 5, 5, 3, 11, 2, 7, 5, 6, 2, 6, 3, 9, 7, 7, 2, 10, 4, 6, 4, 4, 4, 9, 2,

3, 4, 5, 2, 18, 2, 7, 8, 6, 2, 10, 2, 7, 3, 9, 2, 17, 3, 5, 4, 10, 4, 12,

8, 5, 8, 6, 3, 16, 2, 3, 3, 6, 2, 11, 4, 7, 9, 8, 2, 178, 2, 5, 5, 6, 4, 9,

4, 6, 6, 11, 2, 177, 2, 12, 6, 8, 3, 8, 2, 7, 4, 11, 3, 4, 2, 7, 9, 10, 2,

175, 6, 9, 3, 9, 2, 16, 3, 5, 4, 7, 2, 52, 2, 9, 4, 6, 3, 15, 3, 12, 3, 10,

2, 13, 2, 6, 6, 4, 2, 14, 2, 4, 3, 8, 3, 10, 3, 7, 9, 7, 3, 52, 2, 11, 6,

8, 5, 10, 4, 10, 4, 3, 3, 176, 2, 17, 8, 6, 2, 8, 2, 9, 7, 11, 2, 175, 3,

7, 3, 7, 2, 11, 2, 3, 9, 11, 3, 15, 7, 12, 8, 11, 2, 17, 4, 7, 5, 6, 2, 14,

8, 11, 4, 8, 2, 31, 3, 9, 5, 8, 2, 13, 2, 12, 4, 6, 3 ]

gap> Maximum(last);

178

gap> Position(last2,last);

138

gap> AliquotSequence(138);

[ 138, 150, 222, 234, 312, 528, 960, 2088, 3762, 5598, 6570, 10746, 13254,

13830, 19434, 20886, 21606, 25098, 26742, 26754, 40446, 63234, 77406,

110754, 171486, 253458, 295740, 647748, 1077612, 1467588, 1956812, 2109796,

1889486, 953914, 668966, 353578, 176792, 254128, 308832, 502104, 753216,

1240176, 2422288, 2697920, 3727264, 3655076, 2760844, 2100740, 2310856,

2455544, 3212776, 3751064, 3282196, 2723020, 3035684, 2299240, 2988440,

5297320, 8325080, 11222920, 15359480, 19199440, 28875608, 25266172,

19406148, 26552604, 40541052, 54202884, 72270540, 147793668, 228408732,

348957876, 508132204, 404465636, 303708376, 290504024, 312058216,
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294959384, 290622016, 286081174, 151737434, 75868720, 108199856, 101437396,

76247552, 76099654, 42387146, 21679318, 12752594, 7278382, 3660794,

1855066, 927536, 932464, 1013592, 1546008, 2425752, 5084088, 8436192,

13709064, 20563656, 33082104, 57142536, 99483384, 245978376, 487384824,

745600776, 1118401224, 1677601896, 2538372504, 4119772776, 8030724504,

14097017496, 21148436904, 40381357656, 60572036544, 100039354704,

179931895322, 94685963278, 51399021218, 28358080762, 18046051430,

17396081338, 8698040672, 8426226964, 6319670230, 5422685354, 3217383766,

1739126474, 996366646, 636221402, 318217798, 195756362, 101900794,

54202694, 49799866, 24930374, 17971642, 11130830, 8904682, 4913018,

3126502, 1574810, 1473382, 736694, 541162, 312470, 249994, 127286, 69898,

34952, 34708, 26038, 13994, 7000, 11720, 14740, 19532, 16588, 18692, 14026,

7016, 6154, 3674, 2374, 1190, 1402, 704, 820, 944, 916, 694, 350, 394, 200,

265, 59, 1 ]

Thus we see that indeed all Aliquot sequences starting at integers n ≤ 275 either stop or run into
cycles. So far, everything runs quickly and there are no performance problems of any kind. However,
n = 276 causes severe problems – the sequence grows, and factoring becomes a serious problem. As
suggested in the hints, we install the following modified GAP Library method for the operation Sigma

to ensure that FactInt [Koh07a] is used for factoring integers:
GAP code

InstallMethod( Sigma, "use FactInt", true, [ IsPosInt ], SUM_FLAGS,

function( n )

local sigma, p, q, k;

# make <n> it nonnegative, handle trivial cases

if n < 0 then n := -n; fi;

if n = 0 then Error("Sigma: <n> must not be 0"); fi;

if n <= Length(DivisorsIntCache) then

return Sum(DivisorsIntCache[n]);

fi;

# loop over all prime factors p of n

sigma := 1;

for p in Set(Factors(n)) do

# compute p^e and k = 1+p+p^2+..p^e

q := p; k := 1 + p;

while n mod (q * p) = 0 do q := q * p; k := k + q; od;

# combine with the value found so far

sigma := sigma * k;

od;

return sigma;

end );
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Further we insert a Print statement into our AliquotSequence function, and we switch on FactInt’s
Info’s whenever large integers are to be factored:

GAP code

AliquotSequence := function ( n )

local a, i;

a := [n]; i := 1;

while a[i] > 1 and not a[i] in a{[1..i-1]} do

if a[i] > 10^40 then FactIntInfo(3); fi;

Factors(a[i]);

FactIntInfo(0);

Print(String(i,6)," : ",a[i]," = ");

PrintFactorsInt(a[i]); Print("\n");

a[i+1] := Sigma(a[i]) - a[i];

i := i + 1;

od;

return a;

end;

Now try out yourself how far you can get with computing the Aliquot sequence starting at 276 ... !

2.18 The Q Sequence (Solution)

This is a suggested solution for Exercise 1.18.

ad a)
We can write either the following recursive

GAP code

Q := function ( n )

if n in [1,2]

then return 1;

else return Q(n-Q(n-1)) + Q(n-Q(n-2)); fi;

end;

QSequence := l -> List([1..l],Q);

or the following iterative code;
GAP code

QSequence := function ( l )

local Q, n;

Q := [1,1];

for n in [3..l] do

Q[n] := Q[n-Q[n-1]] + Q[n-Q[n-2]];

od;

 http://en.wikipedia.org/wiki/Aliquot_sequence
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return Q;

end;

With the recursive approach, we get something like the following timings:
GAP session log

gap> QSequence(10);

[ 1, 1, 2, 3, 3, 4, 5, 5, 6, 6 ]

gap> time;

0

gap> QSequence(20);

[ 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11, 12 ]

gap> time;

220

gap> QSequence(30);

[ 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11, 12, 12, 12,

12, 16, 14, 14, 16, 16, 16, 16 ]

gap> time;

26640

Thus we observe a horrible increase in runtime. With the iterative approach, this looks quite
different:

GAP session log

gap> QSequence(200);

[ 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11, 12, 12, 12,

12, 16, 14, 14, 16, 16, 16, 16, 20, 17, 17, 20, 21, 19, 20, 22, 21, 22, 23,

23, 24, 24, 24, 24, 24, 32, 24, 25, 30, 28, 26, 30, 30, 28, 32, 30, 32, 32,

32, 32, 40, 33, 31, 38, 35, 33, 39, 40, 37, 38, 40, 39, 40, 39, 42, 40, 41,

43, 44, 43, 43, 46, 44, 45, 47, 47, 46, 48, 48, 48, 48, 48, 48, 64, 41, 52,

54, 56, 48, 54, 54, 50, 60, 52, 54, 58, 60, 53, 60, 60, 52, 62, 66, 55, 62,

68, 62, 58, 72, 58, 61, 78, 57, 71, 68, 64, 63, 73, 63, 71, 72, 72, 80, 61,

71, 77, 65, 80, 71, 69, 77, 75, 73, 77, 79, 76, 80, 79, 75, 82, 77, 80, 80,

78, 83, 83, 78, 85, 82, 85, 84, 84, 88, 83, 87, 88, 87, 86, 90, 88, 87, 92,

90, 91, 92, 92, 94, 92, 93, 94, 94, 96, 94, 96, 96, 96, 96, 96, 96, 128,

72, 96, 115, 100, 84, 114, 110, 93 ]

gap> time;

0

Let’s have a look how often Q calls itself in the recursive version:
GAP code

QCallCounts := function ( n )

local Q, sequence;

Q := function ( n )

sequence[n] := sequence[n] + 1;

if n in [1,2]
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then return 1;

else return Q(n-Q(n-1)) + Q(n-Q(n-2)); fi;

end;

sequence := ListWithIdenticalEntries(n,0);

Q(n);

return sequence;

end;

We obtain
GAP session log

gap> QCallCounts(30);

[ 1477421, 5444369, 1477421, 415342, 181422, 98727, 55073, 31366, 18752,

11250, 6884, 4238, 2604, 1601, 987, 610, 377, 233, 144, 89, 55, 34, 21, 13,

8, 5, 3, 2, 1, 1 ]

This clearly explains the poor performance. (By the way: The end of the sequence seems to
be the reversed beginning of the sequence of Fibonacci numbers – can you find out something
about this?)

ad b)
We can write the following GAP function:

GAP code

PlotQSequence := function ( l, filename )

local Q, graph, h, n, i, j, zero, one;

Q := QSequence(l);

h := Maximum(Q); # use the maximum as the height of the picture

graph := NullMat(h,l);

zero := Zero(GF(2)); one := One(GF(2));

for i in [1..h] do for j in [1..l] do graph[i][j] := one; od; od;

for n in [1..l] do graph[Q[n]][n] := zero; od;

SaveAsBitmapPicture(graph,filename);

end;
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