Theorem Let $n=p_{1} p_{2} p_{3}$ be a Carmichael number with 3 prime factors. Without loss of generality, assume that $p_{2}<p_{3}$. Then the following hold:

1. $p_{2}<2 p_{1}^{2}$.
2. $p_{3}<2 p_{1}^{3}$.
3. $n<4 p_{1}^{6}$.

Proof: It is an elementary property of Carmichael numbers $n=p_{1} \cdot \ldots \cdot p_{k}$ that $\forall i \in\{1, \ldots, k\}\left(p_{i}-1\right) \mid(n-1)$. From this, in case $k=3$ we conclude

- $\left(p_{3}-1\right) \mid\left(p_{1} p_{2}-1\right) \Rightarrow p_{1} p_{2}-1=a\left(p_{3}-1\right)$ for some $a \in \mathbb{N}$, and
- $\left(p_{2}-1\right) \mid\left(p_{1} p_{3}-1\right) \Rightarrow p_{1} p_{3}-1=b\left(p_{2}-1\right)$ for some $b \in \mathbb{N}$.

The assumption $p_{2}<p_{3}$ implies $a<b$. Further it is

- $a \geq 2$ since $p_{1} p_{2}-1=1\left(p_{3}-1\right)$ contradicts the primality of p_{3}, and
- $b \geq 2$ since $p_{1} p_{3}-1=1\left(p_{2}-1\right)$ contradicts the primality of p_{2}.

We also get

- $p_{1} p_{2}-1=a\left(p_{3}-1\right)=a p_{3}-a \Longrightarrow p_{3}=\left(p_{1} p_{2}+a-1\right) / a$, and
- $p_{1} p_{3}-1=b\left(p_{2}-1\right)=b p_{2}-b \Longrightarrow p_{2}=\left(p_{1} p_{3}+b-1\right) / b$.

Inserting the former equation into the latter yields

$$
p_{2}=\frac{p_{1}\left(p_{1} p_{2}+a-1\right) / a+b-1}{b}=\frac{p_{1}^{2} p_{2}+a b+\left(p_{1}-1\right) a-p_{1}}{a b} .
$$

This implies that

$$
\left(p_{1}^{2}-a b\right) p_{2}+a b+\left(p_{1}-1\right) a-p_{1}=0
$$

from which we get

$$
p_{2}=\frac{a b+\left(p_{1}-1\right) a-p_{1}}{a b-p_{1}^{2}}<\frac{a b}{a b-p_{1}^{2}}+\frac{\left(p_{1}-1\right) a}{a b-p_{1}^{2}} .
$$

We have $a b \neq p_{1}^{2}$, since assuming the contrary yields $a=b=p_{1} \Rightarrow p_{1} p_{2}-1=p_{1}\left(p_{3}-1\right) \Rightarrow$ $p_{3}=p_{2}+1-1 / p_{1} \notin \mathbb{N}$, which is not possible. Further it is $a b>p_{1}^{2}$ since $p_{2}>0$ and $a b+\left(p_{1}-1\right) a>0$. This yields

$$
\frac{a b}{a b-p_{1}^{2}} \leq \frac{p_{1}^{2}+1}{\left(p_{1}^{2}+1\right)-p_{1}^{2}}=p_{1}^{2}+1
$$

By the assumption $p_{2}<p_{3}$ we have $p_{1}\left(p_{3}-1\right)>p_{1} p_{2}-1=a\left(p_{3}-1\right)$, hence $a<p_{1}$. We conclude that

$$
\frac{\left(p_{1}-1\right) a}{a b-p_{1}^{2}}<\frac{\left(p_{1}-1\right) p_{1}}{a b-p_{1}^{2}} \leq p_{1}^{2}-p_{1} .
$$

This yields $p_{2}<p_{1}^{2}+1+p_{1}^{2}-p_{1}<2 p_{1}^{2}$, as claimed. From $p_{1} p_{2}-1=a\left(p_{3}-1\right)$ we get $p_{3}<p_{1} p_{2}<2 p_{1}^{3}$, and finally $n=p_{1} p_{2} p_{3}<p_{1} \cdot 2 p_{1}^{2} \cdot 2 p_{1}^{3}=4 p_{1}^{6}$.

