
RCWA

Residue-Class-Wise Affine Groups

Version 4.3.1

March 9, 2016

Stefan Kohl

Stefan Kohl Email: stefan@mcs.st-and.ac.uk
Homepage: http://www.gap-system.org/DevelopersPages/StefanKohl/

mailto://stefan@mcs.st-and.ac.uk
 http://www.gap-system.org/DevelopersPages/StefanKohl/

RCWA 2

Abstract
RCWA is a package for GAP 4. It provides implementations of algorithms and methods for computing in
certain infinite permutation groups acting on the set of integers. This package can be used to investigate the
following types of groups and many more:

• Finite groups, and certain divisible torsion groups which they embed into.

• Free groups of finite rank.

• Free products of finitely many finite groups.

• Direct products of the above groups.

• Wreath products of the above groups with finite groups and with (Z,+).

• Subgroups of any such groups.

With the help of this package, the author has found a countable simple group which is generated by involutions
interchanging disjoint residue classes of Z and which all the above groups embed into – see [Koh10].

Copyright
© 2003 - 2016 by Stefan Kohl.

RCWA is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any
later version.

RCWA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

For a copy of the GNU General Public License, see the file GPL in the etc directory of the GAP distribution
or see http://www.gnu.org/licenses/gpl.html.

Acknowledgements

I am grateful to John P. McDermott for the discovery that the group discussed in Section 7.1 is isomorphic to
the Higman-Thompson group (which is a finitely presented infinite simple group) in July 2008, and to Laurent
Bartholdi for his hint on how to construct wreath products of residue-class-wise affine groups with (Z,+) in
April 2006. Further, I thank Bettina Eick for communicating this package and for her valuable suggestions on
its manual in the time before its first public release in April 2005. Last but not least I thank the two anonymous
referees for their constructive criticism and their helpful suggestions.

http://www.gnu.org/licenses/gpl.html

Contents

1 About the RCWA Package 5

2 Residue-Class-Wise Affine Mappings 7
2.1 Basic definitions . 7
2.2 Entering residue-class-wise affine mappings . 8
2.3 Basic arithmetic for residue-class-wise affine mappings 14
2.4 Attributes and properties of residue-class-wise affine mappings 16
2.5 Factoring residue-class-wise affine permutations . 20
2.6 Extracting roots of residue-class-wise affine mappings 22
2.7 Special functions for non-bijective mappings . 23
2.8 On trajectories and cycles of residue-class-wise affine mappings 24
2.9 Saving memory – the sparse representation of rcwa mappings 29
2.10 The categories and families of rcwa mappings . 30

3 Residue-Class-Wise Affine Groups 31
3.1 Constructing residue-class-wise affine groups . 31
3.2 Basic routines for investigating residue-class-wise affine groups 37
3.3 The natural action of an rcwa group on the underlying ring 42
3.4 Special attributes of tame residue-class-wise affine groups 54
3.5 Generating pseudo-random elements of RCWA(R) and CT(R) 55
3.6 The categories of residue-class-wise affine groups 56

4 Residue-Class-Wise Affine Monoids 58
4.1 Constructing residue-class-wise affine monoids . 58
4.2 Computing with residue-class-wise affine monoids 59

5 Residue-Class-Wise Affine Mappings, Groups and Monoids over Z2 62
5.1 The definition of residue-class-wise affine mappings of Zd 62
5.2 Entering residue-class-wise affine mappings of Z2 63
5.3 Methods for residue-class-wise affine mappings of Z2 67
5.4 Methods for residue-class-wise affine groups and -monoids over Z2 69

6 Databases of Residue-Class-Wise Affine Groups and -Mappings 71
6.1 The collection of examples . 71
6.2 Databases of rcwa groups . 72
6.3 Databases of rcwa mappings . 75

3

RCWA 4

7 Examples 77
7.1 The Higman-Thompson group . 77
7.2 Factoring Collatz’ permutation of the integers . 80
7.3 The 3n+1 group . 82
7.4 A group with huge finite orbits . 89
7.5 A group which acts 4-transitively on the positive integers 93
7.6 A group which acts 3-transitively, but not 4-transitively on Z 101
7.7 An rcwa mapping which seems to be contracting, but very slow 104
7.8 Checking a result by P. Andaloro . 106
7.9 Two examples by Matthews and Leigh . 106
7.10 Orders of commutators . 108
7.11 An infinite subgroup of CT(GF(2)[x]) with many torsion elements 110
7.12 An abelian rcwa group over a polynomial ring . 113
7.13 Checking for solvability . 114
7.14 Some examples over (semi)localizations of the integers 115
7.15 Twisting 257-cycles into an rcwa mapping with modulus 32 118
7.16 The behaviour of the moduli of powers . 119
7.17 Images and preimages under the Collatz mapping 120
7.18 An extension of the Collatz mapping T to a permutation of Z2 122
7.19 Finite quotients of Grigorchuk groups . 125
7.20 Forward orbits of a monoid with 2 generators . 127
7.21 The free group of rank 2 and the modular group PSL(2,Z) 128

8 The Algorithms Implemented in RCWA 131

9 Installation and Auxiliary Functions 146
9.1 Requirements . 146
9.2 Installation . 146
9.3 Building the manual . 146
9.4 The testing routines . 146
9.5 The Info class of the package . 147

References 149

Index 150

Chapter 1

About the RCWA Package

This package permits to compute in monoids, in particular groups, whose elements are residue-class-
wise affine mappings. Probably the widest-known occurrence of such a mapping is in the statement
of the 3n+1 conjecture, which asserts that iterated application of the Collatz mapping

T : Z−→ Z, n 7−→

{
n
2 if n is even,
3n+1

2 if n is odd

to any given positive integer eventually yields 1 (cf. [Lag03]). For definitions, see Section 2.1.
Presently, most research in computational group theory focuses on finite permutation groups,

matrix groups, finitely presented groups, polycyclically presented groups and automata groups. For
details, we refer to [HEO05]. The purpose of this package is twofold:

• On the one hand, it provides the means to deal with another large class of groups which are
accessible to computational methods, and it therefore extends the range of groups which can be
dealt with by means of computation.

• On the other – and perhaps more importantly – residue-class-wise affine groups appear to be
interesting mathematical objects in their own right, and this package is intended to serve as a
tool to obtain a better understanding of their rich and often complicated group theoretical and
combinatorial structure.

In principle this package permits to construct and investigate all groups which have faithful repre-
sentations as residue-class-wise affine groups. Among many others, the following groups and their
subgroups belong to this class:

• Finite groups, and certain divisible torsion groups which they embed into.

• Free groups of finite rank.

• Free products of finitely many finite groups.

• Direct products of the above groups.

• Wreath products of the above groups with finite groups and with (Z,+).

5

RCWA 6

This list permits already to conclude that there are finitely generated residue-class-wise affine groups
which do not have finite presentations, and such with algorithmically unsolvable membership prob-
lem. However the list is certainly by far not exhaustive, and using this package it is easy to construct
groups of types which are not mentioned there.

The group CT(Z) which is generated by all class transpositions of Z – these are involutions which
interchange two disjoint residue classes, see ClassTransposition (2.2.3) – is a simple group which
has subgroups of all types listed above. It is countable, but it has an uncountable series of simple
subgroups which is parametrized by the sets of odd primes.

Proofs of most of the results mentioned so far can be found in [Koh10]. Descriptions of a part of
the algorithms and methods which are implemented in this package can be found in [Koh08].

The reader might want to know what type of results one can obtain with RCWA. However, the
answer to this is that the package can be applied in various ways to various different problems, and it
is simply not possible to say in general what can be found out with its help. So one really cannot give
a better answer here than for the same question about GAP itself. The best way to get familiar with
the package and its capabilities is likely to experiment with the examples discussed in this manual and
the groups generated by 3 class transpositions from the corresponding data library.

Of course, sometimes this package does not provide an out-of-the-box solution for a given prob-
lem. But quite often it is still possible to find an answer by an interactive trial-and-error approach.
With substantial help of this package, the author has found the results mentioned above. Interactive
sessions with this package have also led to the development of most of the algorithms which are now
implemented in it. Just to mention one example, developing the factorization method for residue-
class-wise affine permutations (see FactorizationIntoCSCRCT (2.5.1)) solely by means of theory
would likely have been very hard.

Chapter 2

Residue-Class-Wise Affine Mappings

This chapter contains the basic definitions, and it describes how to enter residue-class-wise affine
mappings and how to compute with them.

How to compute with residue-class-wise affine groups is described in detail in the next chapter.
The reader is encouraged to look there already after having read the first few pages of this chapter,
and to look up definitions as he needs to.

2.1 Basic definitions

Residue-class-wise affine groups, or rcwa groups for short, are permutation groups whose elements
are bijective residue-class-wise affine mappings.

A mapping f : Z→ Z is called residue-class-wise affine, or for short an rcwa mapping, if there is
a positive integer m such that the restrictions of f to the residue classes r(m) ∈ Z/mZ are all affine,
i.e. given by

f |r(m) : r(m)→ Z, n 7→
ar(m) ·n+br(m)

cr(m)

for certain coefficients ar(m),br(m),cr(m) ∈ Z depending on r(m). The smallest possible m is called
the modulus of f . It is understood that all fractions are reduced, i.e. that gcd(ar(m),br(m),cr(m)) = 1,
and that cr(m) > 0. The lcm of the coefficients ar(m) is called the multiplier of f , and the lcm of the
coefficients cr(m) is called the divisor of f .

It is easy to see that the residue-class-wise affine mappings of Z form a monoid under composition,
and that the residue-class-wise affine permutations of Z form a countable subgroup of Sym(Z). We
denote the former by Rcwa(Z), and the latter by RCWA(Z).

An rcwa mapping is called tame if the set of moduli of its powers is bounded, or equivalently if it
permutes a partition of Z into finitely many residue classes on all of which it is affine. An rcwa group
is called tame if there is a common such partition for all of its elements, or equivalently if the set of
moduli of its elements is bounded. Rcwa mappings and -groups which are not tame are called wild.
Tame rcwa mappings and -groups are something which one could call the “trivial cases” or “basic
building blocks”, while wild rcwa groups are the objects of primary interest.

The definitions of residue-class-wise affine mappings and -groups can be generalized in the obvi-
ous way to suitable rings other than Z. In fact, this package provides also some support for residue-
class-wise affine groups over Z2, over semilocalizations of Z and over univariate polynomial rings
over finite fields. The ring Z2 has been chosen as an example of a suitable ring which is not a princi-
pal ideal domain, the semilocalizations of Z have been chosen as examples of rings with only finitely

7

RCWA 8

many prime elements, and the univariate polynomial rings over finite fields have been chosen as ex-
amples of rings with nonzero characteristic.

2.2 Entering residue-class-wise affine mappings

Entering an rcwa mapping of Z requires giving the modulus m and the coefficients ar(m), br(m) and cr(m)

for r(m) running over the residue classes (mod m).
This can be done easiest by RcwaMapping(coeffs), where coeffs is a list of m coefficient

triples coeffs[r+1] = [ar(m), br(m), cr(m)], with r running from 0 to m−1.
If some coefficient cr(m) is zero or if images of some integers under the mapping to be defined

would not be integers, an error message is printed and a break loop is entered. For example, the
coefficient triple [1,4,3] is not allowed at the first position. The reason for this is that not all integers
congruent to 1 ·0+4 = 4 mod m are divisible by 3.

For the general constructor for rcwa mappings, see RcwaMapping (2.2.5).
Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]); # The Collatz mapping.

<rcwa mapping of Z with modulus 2>

gap> [IsSurjective(T), IsInjective(T)];

[true, false]

gap> Display(T);

Surjective rcwa mapping of Z with modulus 2

/

| n/2 if n in 0(2)

n |-> < (3n+1)/2 if n in 1(2)

|

\

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);

<rcwa mapping of Z with modulus 3>

gap> IsBijective(a);

true

gap> Display(a); # This is Collatz' permutation:

Rcwa permutation of Z with modulus 3

/

| 2n/3 if n in 0(3)

n |-> < (4n-1)/3 if n in 1(3)

| (4n+1)/3 if n in 2(3)

\

gap> Support(a);

Z \ [-1, 0, 1]

gap> Cycle(a,44);

[44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66]

RCWA 9

There is computational evidence for the conjecture that any residue-class-wise affine permutation
of Z can be factored into members of the following three series of permutations of particularly simple
structure (cf. FactorizationIntoCSCRCT (2.5.1)):

2.2.1 ClassShift (r, m)

. ClassShift(r, m) (function)

. ClassShift(cl) (function)

Returns: the class shift νr(m).
The class shift νr(m) is the rcwa mapping of Z which maps n ∈ r(m) to n+m and which fixes

Z\ r(m) pointwise.
In the one-argument form, the argument cl stands for the residue class r(m). Enclosing the

argument list in list brackets is permitted.
Example

gap> Display(ClassShift(5,12));

Tame rcwa permutation of Z with modulus 12, of order infinity

/

| n+12 if n in 5(12)

n |-> < n if n in Z \ 5(12)

|

\

2.2.2 ClassReflection (r, m)

. ClassReflection(r, m) (function)

. ClassReflection(cl) (function)

Returns: the class reflection ςr(m).
The class reflection ςr(m) is the rcwa mapping of Z which maps n ∈ r(m) to −n+ 2r and which

fixes Z\ r(m) pointwise, where it is understood that 0≤ r < m.
In the one-argument form, the argument cl stands for the residue class r(m). Enclosing the

argument list in list brackets is permitted.
Example

gap> Display(ClassReflection(5,9));

Rcwa permutation of Z with modulus 9, of order 2

/

| -n+10 if n in 5(9)

n |-> < n if n in Z \ 5(9)

|

\

RCWA 10

2.2.3 ClassTransposition (r1, m1, r2, m2)

. ClassTransposition(r1, m1, r2, m2) (function)

. ClassTransposition(cl1, cl2) (function)

Returns: the class transposition τr1(m1),r2(m2).
Given two disjoint residue classes r1(m1) and r2(m2) of the integers, the class transposition

τr1(m1),r2(m2) ∈ RCWA(Z) is defined as the involution which interchanges r1+km1 and r2+km2 for any
integer k and which fixes all other points. It is understood that m1 and m2 are positive, that 0≤ r1 <m1
and that 0≤ r2 < m2. For a generalized class transposition, the latter assumptions are not made.

The class transposition τr1(m1),r2(m2) interchanges the residue classes r1(m1) and r2(m2) and fixes
the complement of their union pointwise.

In the four-argument form, the arguments r1 , m1 , r2 and m2 stand for r1, m1, r2 and m2, respec-
tively. In the two-argument form, the arguments cl1 and cl2 stand for the residue classes r1(m1)
and r2(m2), respectively. Enclosing the argument list in list brackets is permitted. The residue classes
r1(m1) and r2(m2) are stored as an attribute TransposedClasses.

A list of all class transpositions interchanging residue classes with moduli less than or equal
to a given bound m can be obtained by List(ClassPairs(m),ClassTransposition), where the
function ClassPairs returns a list of all 4-tuples (r1,m1,r2,m2) of integers corresponding to the
unordered pairs of disjoint residue classes r1(m1) and r2(m2) with m1 and m2 less than or equal to
the specified bound. The function NrClassPairs(m) returns the length of the list ClassPairs(m),
where the result is computed much faster and without actually generating the list of tuples.

A class transposition can be written as a product of any given number k of class transpositions.
Such a decomposition can be obtained by SplittedClassTransposition(ct,k).

Example

gap> Display(ClassTransposition(1,2,8,10));

Rcwa permutation of Z with modulus 10, of order 2

(1(2), 8(10))

gap> Display(ClassTransposition(1,2,8,10):CycleNotation:=false);

Rcwa permutation of Z with modulus 10, of order 2

/

| 5n+3 if n in 1(2)

n |-> < (n-3)/5 if n in 8(10)

| n if n in 0(2) \ 8(10)

\

gap> List(ClassPairs(4),ClassTransposition);

[(0(2), 1(2)), (0(2), 1(4)), (0(2), 3(4)), (0(3), 1(3)),

(0(3), 2(3)), (0(4), 1(4)), (0(4), 2(4)), (0(4), 3(4)),

(1(2), 0(4)), (1(2), 2(4)), (1(3), 2(3)), (1(4), 2(4)),

(1(4), 3(4)), (2(4), 3(4))]

gap> NrClassPairs(100);

3528138

gap> SplittedClassTransposition(ClassTransposition(0,2,1,4),3);

[(0(6), 1(12)), (2(6), 5(12)), (4(6), 9(12))]

RCWA 11

The set of all class transpositions of the ring of integers generates the simple group CT(Z) mentioned
in Chapter 1. This group has a representation as a GAP object – see CT (3.1.9). The set of all
generalized class transpositions of Z generates a simple group as well, cf. [Koh10].

Class shifts, class reflections and class transpositions of rings R other than Z are defined in an
entirely analogous way – all one needs to do is to replace Z by R and to read < and ≤ in the sense of
the ordering used by GAP. They can also be entered basically as described above – just prepend the
desired ring R to the argument list. Often also a sensible “default ring” (→ DefaultRing in the GAP
Reference Manual) is chosen if that optional first argument is omitted.

On rings which have more than two units, there is another basic series of rcwa permutations which
generalizes class reflections:

2.2.4 ClassRotation (r, m, u)

. ClassRotation(r, m, u) (function)

. ClassRotation(cl, u) (function)

Returns: the class rotation ρr(m),u.
Given a residue class r(m) and a unit u of a suitable ring R, the class rotation ρr(m),u is the rcwa

mapping which maps n ∈ r(m) to un+(1− u)r and which fixes R \ r(m) pointwise. Class rotations
generalize class reflections, as we have ρr(m),−1 = ςr(m).

In the two-argument form, the argument cl stands for the residue class r(m). Enclosing the
argument list in list brackets is permitted. The argument u is stored as an attribute RotationFactor.

Example

gap> Display(ClassRotation(ResidueClass(Z_pi(2),2,1),1/3));

Tame rcwa permutation of Z_(2) with modulus 2, of order infinity

/

| 1/3 n + 2/3 if n in 1(2)

n |-> < n if n in 0(2)

|

\

gap> x := Indeterminate(GF(8),1);; SetName(x,"x");

gap> R := PolynomialRing(GF(8),1);;

gap> cr := ClassRotation(1,x,Z(8)*One(R)); Support(cr);

ClassRotation(1(x), Z(2^3))

1(x) \ [1]

gap> Display(cr);

Rcwa permutation of GF(2^3)[x] with modulus x, of order 7

/

| Z(2^3)*P + Z(2^3)^3 if P in 1(x)

P |-> < P otherwise

|

\

RCWA 12

There are properties IsClassShift, IsClassReflection, IsClassRotation,
IsClassTransposition and IsGeneralizedClassTransposition, which indicate whether
a given rcwa mapping belongs to the corresponding series.

In the sequel we describe the general-purpose constructor for rcwa mappings. The constructor
may look a bit technical on a first glance, but knowing all possible ways of entering an rcwa mapping
is by no means necessary for understanding this manual or for using this package.

2.2.5 RcwaMapping (the general constructor)

. RcwaMapping(R, m, coeffs) (method)

. RcwaMapping(R, coeffs) (method)

. RcwaMapping(coeffs) (method)

. RcwaMapping(perm, range) (method)

. RcwaMapping(m, values) (method)

. RcwaMapping(pi, coeffs) (method)

. RcwaMapping(q, m, coeffs) (method)

. RcwaMapping(P1, P2) (method)

. RcwaMapping(cycles) (method)

. RcwaMapping(expression) (method)

Returns: an rcwa mapping.
In all cases the argument R is the underlying ring, m is the modulus and coeffs is the coefficient

list. A coefficient list for an rcwa mapping with modulus m consists of |R/mR| coefficient triples
[ar(m), br(m), cr(m)]. Their ordering is determined by the ordering of the representatives of the residue
classes (mod m) in the sorted list returned by AllResidues(R, m). In case R = Z this means that
the coefficient triple for the residue class 0(m) comes first and is followed by the one for 1(m), the
one for 2(m) and so on.

If one or several of the arguments R , m and coeffs are omitted or replaced by other arguments,
the former are either derived from the latter or default values are chosen. The meaning of the other
arguments is defined in the detailed description of the particular methods given in the sequel. The
above methods return the rcwa mapping

(a) of R with modulus m and coefficients coeffs ,

(b) of R = Z or R = Z(π) with modulus Length(coeffs) and coefficients coeffs ,

(c) of R = Z with modulus Length(coeffs) and coefficients coeffs ,

(d) of R = Z, permuting any set range+k*Length(range) like perm permutes range ,

(e) of R = Z with modulus m and values given by a list val of 2 pairs [preimage, image] per
residue class (mod m),

(f) of R = Z(π) with modulus Length(coeffs) and coefficients coeffs (the set of primes π which
denotes the underlying ring is passed as argument pi),

(g) of R = GF(q)[x] with modulus m and coefficients coeffs ,

(h) an rcwa permutation which induces a bijection between the partitions P1 and P2 of R into
residue classes and which is affine on the elements of P1 ,

RCWA 13

(i) an rcwa permutation with “residue class cycles” given by a list cycles of lists of pairwise
disjoint residue classes, each of which it permutes cyclically, or

(j) the rcwa permutation of Z given by the arithmetical expression expression – a string con-
sisting of class transpositions (e.g. "(0(2),1(4))") or cycles permuting residue classes
(e.g. "(0(2),1(8),3(4),5(8))"), class shifts (e.g. "cs(4(6))", class reflections (e.g.
"cr(3(4))"), arithmetical operators ("*", "/" and "^") and brackets ("(", ")"),

respectively. The methods for the operation RcwaMapping perform a number of argument checks,
which can be skipped by using RcwaMappingNC instead.

Example

gap> R := PolynomialRing(GF(2),1);; x := X(GF(2),1);; SetName(x,"x");

gap> RcwaMapping(R,x+1,[[1,0,x+One(R)],[x+One(R),0,1]]*One(R)); # (a)

<rcwa mapping of GF(2)[x] with modulus x+1>

gap> RcwaMapping(Z_pi(2),[[1/3,0,1]]); # (b)

Rcwa mapping of Z_(2): n -> 1/3 n

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]); # (c)

<rcwa mapping of Z with modulus 3>

gap> RcwaMapping((1,2,3),[1..4]); # (d)

(1(4), 2(4), 3(4))

gap> T = RcwaMapping(2,[[1,2],[2,1],[3,5],[4,2]]); # (e)

true

gap> RcwaMapping([2],[[1/3,0,1]]); # (f)

Rcwa mapping of Z_(2): n -> 1/3 n

gap> RcwaMapping(2,x+1,[[1,0,x+One(R)],[x+One(R),0,1]]*One(R)); # (g)

<rcwa mapping of GF(2)[x] with modulus x+1>

gap> a = RcwaMapping(List([[0,3],[1,3],[2,3]],ResidueClass),

> List([[0,2],[1,4],[3,4]],ResidueClass)); # (h)

true

gap> RcwaMapping([List([[0,2],[1,4],[3,8],[7,16]],ResidueClass)]); # (i)

(0(2), 1(4), 3(8), 7(16))

gap> Cycle(last,ResidueClass(0,2));

[0(2), 1(4), 3(8), 7(16)]

gap> g := RcwaMapping("((0(4),1(6))*cr(0(6)))^2/cs(2(8))"); # (j)

<rcwa permutation of Z with modulus 72>

gap> g = (ClassTransposition(0,4,1,6) * ClassReflection(0,6))^2/

> ClassShift(2,8);

true

Rcwa mappings of Z can be “translated” to rcwa mappings of some semilocalization Z(π) of Z:

2.2.6 LocalizedRcwaMapping (for an rcwa mapping of Z and a prime)

. LocalizedRcwaMapping(f, p) (function)

. SemilocalizedRcwaMapping(f, pi) (function)

Returns: the rcwa mapping of Z(p) respectively Z(π) with the same coefficients as the rcwa
mapping f of Z.

The argument p or pi must be a prime or a set of primes, respectively. The argument f must be
an rcwa mapping of Z whose modulus is a power of p , or whose modulus has only prime divisors
which lie in pi , respectively.

RCWA 14

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.

gap> Cycle(LocalizedRcwaMapping(T,2),131/13);

[131/13, 203/13, 311/13, 473/13, 716/13, 358/13, 179/13, 275/13,

419/13, 635/13, 959/13, 1445/13, 2174/13, 1087/13, 1637/13, 2462/13,

1231/13, 1853/13, 2786/13, 1393/13, 2096/13, 1048/13, 524/13, 262/13]

Rcwa mappings can be Viewed, Displayed, Printed and written to a String. The output of the View
method is kept reasonably short. In most cases it does not describe an rcwa mapping completely. In
these cases the output is enclosed in brackets. There are options CycleNotation, AsClassMapping,
PrintNotation and AbridgedNotation to take influence on how certain rcwa mappings are shown.
These options can either be not set, set to true or set to false. If the option CycleNotation is
set, it is tried harder to write down an rcwa permutation of Z of finite order as a product of dis-
joint residue class cycles, if this is possible. If the option AsClassMapping is set, Display shows
which residue classes are mapped to which by the affine partial mappings, and marks any loops.
The option PrintNotation influences the output in favour of GAP - readability, and the option
AbridgedNotation can be used to abridge longer names like ClassShift, ClassReflection etc..
By default, the output of the methods for Display and Print describes an rcwa mapping in full. The
Printed representation of an rcwa mapping is GAP - readable if and only if the Printed representa-
tion of the elements of the underlying ring is so.

There is also an operation LaTeXStringRcwaMapping, which takes as argument an rcwa map-
ping and returns a corresponding LATEX string. The output makes use of the LATEX macro pack-
age amsmath. If the option Factorization is set and the argument is bijective, a factor-
ization into class shifts, class reflections, class transpositions and prime switches is printed (cf.
FactorizationIntoCSCRCT (2.5.1)). For rcwa mappings with modulus greater than 1, an inden-
tation by Indentation characters can be obtained by setting this option value accordingly.

Example

gap> Print(LaTeXStringRcwaMapping(T));

n \ \mapsto \

\begin{cases}

n/2 & \text{if} \ n \in 0(2), \\

(3n+1)/2 & \text{if} \ n \in 1(2).

\end{cases}

There is an operation LaTeXAndXDVI which displays an rcwa mapping in an xdvi window. This works
as follows: The string returned by LaTeXStringRcwaMapping is inserted into a LATEX template file.
This file is LATEX’ed, and the result is shown with xdvi. Calling Display with option xdvi has the
same effect. The operation LaTeXAndXDVI is only available on UNIX systems, and requires suitable
installations of LATEX and xdvi.

2.3 Basic arithmetic for residue-class-wise affine mappings

Testing rcwa mappings for equality requires only comparing their coefficient lists, hence is cheap.
Rcwa mappings can be multiplied, thus there is a method for *. Rcwa permutations can also be

RCWA 15

inverted, thus there is a method for Inverse. The latter method is usually accessed by raising a
mapping to a power with negative exponent. Multiplying, inverting and computing powers of tame
rcwa mappings is cheap. Computing powers of wild mappings is usually expensive – run time and
memory requirements normally grow approximately exponentially with the exponent. How expensive
multiplying a couple of wild mappings is, varies very much. In any case, the amount of memory
required for storing an rcwa mapping is proportional to its modulus. Whether a given mapping is
tame or wild can be determined by the operation IsTame. There is a method for Order, which can
not only compute a finite order, but which can also detect infinite order.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz' permutation.

gap> List([-4..4],k->Modulus(a^k));

[256, 64, 16, 4, 1, 3, 9, 27, 81]

gap> IsTame(T) or IsTame(a);

false

gap> IsTame(ClassShift(0,1)) and IsTame(ClassTransposition(0,2,1,2));

true

gap> T^2*a*T*a^-3;

<rcwa mapping of Z with modulus 768>

gap> (ClassShift(1,3)*ClassReflection(2,7))^1000000;

<rcwa permutation of Z with modulus 21>

There are methods installed for IsInjective, IsSurjective, IsBijective and Image.
Example

gap> [IsInjective(T), IsSurjective(T), IsBijective(a)];

[false, true, true]

gap> Image(RcwaMapping([[2,0,1]]));

0(2)

Images of elements, of finite sets of elements and of unions of finitely many residue classes of the
source of an rcwa mapping can be computed with ^, the same symbol as used for exponentiation and
conjugation. The same works for partitions of the source into a finite number of residue classes.

Example

gap> 15^T;

23

gap> ResidueClass(1,2)^T;

2(3)

gap> List([[0,3],[1,3],[2,3]],ResidueClass)^a;

[0(2), 1(4), 3(4)]

For computing preimages of elements under rcwa mappings, there are methods for PreImageElm and
PreImagesElm. The preimage of a finite set of ring elements or of a union of finitely many residue
classes under an rcwa mapping can be computed by PreImage.

RCWA 16

Example

gap> PreImagesElm(T,8);

[5, 16]

gap> PreImage(T,ResidueClass(Integers,3,2));

Z \ 0(6) U 2(6)

gap> M := [1];; l := [1];;

gap> while Length(M) < 5000 do M := PreImage(T,M); Add(l,Length(M)); od; l;

[1, 1, 2, 2, 4, 5, 8, 10, 14, 18, 26, 36, 50, 67, 89, 117, 157, 208,

277, 367, 488, 649, 869, 1154, 1534, 2039, 2721, 3629, 4843, 6458]

There is a method for the operation Support for computing the support of an rcwa mapping. A
synonym for Support is MovedPoints. The natural density of the support of an rcwa mapping of
Z can be computed efficiently with the operation DensityOfSupport. Likewise, the natural density
of the set of fixed points of an rcwa mapping of Z can be computed efficiently with the operation
DensityOfSetOfFixedPoints. There is also a method for RestrictedPerm for computing the
restriction of an rcwa permutation to a union of residue classes which it fixes setwise.

Example

gap> List([a,a^2],Support);

[Z \ [-1, 0, 1], Z \ [-3, -2, -1, 0, 1, 2, 3]]

gap> RestrictedPerm(ClassShift(0,2)*ClassReflection(1,2),

> ResidueClass(0,2));

<rcwa mapping of Z with modulus 2>

gap> last = ClassShift(0,2);

true

Rcwa mappings can be added and subtracted pointwise. However, please note that the set of rcwa
mappings of a ring does not form a ring under + and *.

Example

gap> b := ClassShift(0,3) * a;;

gap> [Image((a + b)), Image((a - b))];

[2(4), [-2, 0]]

There are operations Modulus (abbreviated Mod) and Coefficients for retrieving the modulus and
the coefficient list of an rcwa mapping. The meaning of the return values is as described in Section 2.2.

General documentation for most operations mentioned in this section can be found in the GAP
reference manual. For rcwa mappings of rings other than Z, not for all operations applicable methods
are available.

As in general a subring relation R1 < R2 does not give rise to a natural embedding of RCWA(R1)
into RCWA(R2), there is no coercion between rcwa mappings or rcwa groups over different rings.

2.4 Attributes and properties of residue-class-wise affine mappings

A number of basic attributes and properties of an rcwa mapping are derived immediately from the
coefficients of its affine partial mappings. This holds for example for the multiplier and the divi-

RCWA 17

sor. These two values are stored as attributes Multiplier and Divisor, or for short Mult and Div.
The prime set of an rcwa mapping is the set of prime divisors of the product of its modulus and its
multiplier. It is stored as an attribute PrimeSet. The maximal shift of an rcwa mapping of Z is the
maximum of the absolute values of its coefficients br(m) in the notation introduced in Section 2.1. It
is stored as an attribute MaximalShift. An rcwa mapping is called class-wise translating if all of
its affine partial mappings are translations, it is called integral if its divisor equals 1, and it is called
balanced if its multiplier and its divisor have the same prime divisors. A class-wise translating map-
ping has the property IsClassWiseTranslating, an integral mapping has the property IsIntegral

and a balanced mapping has the property IsBalanced. An rcwa mapping of the ring of integers or
of one of its semilocalizations is called class-wise order-preserving if and only if all coefficients ar(m)

(cf. Section 2.1) in the numerators of the affine partial mappings are positive. The corresponding
property is IsClassWiseOrderPreserving. An rcwa mapping of Z is called sign-preserving if it
does not map nonnegative integers to negative integers or vice versa. The corresponding property
is IsSignPreserving. All elements of the simple group CT(Z) generated by the set of all class
transpositions are sign-preserving.

Example

gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;

gap> IsBijective(u);; Display(u);

Rcwa permutation of Z with modulus 5

/

| 3n/5 if n in 0(5)

| (9n+1)/5 if n in 1(5)

n |-> < (3n-1)/5 if n in 2(5)

| (9n-2)/5 if n in 3(5)

| (9n+4)/5 if n in 4(5)

\

gap> Multiplier(u);

9

gap> Divisor(u);

5

gap> PrimeSet(u);

[3, 5]

gap> IsIntegral(u) or IsBalanced(u);

false

gap> IsClassWiseOrderPreserving(u) and IsSignPreserving(u);

true

There are a couple of further attributes and operations related to the affine partial mappings of an rcwa
mapping:

2.4.1 LargestSourcesOfAffineMappings (for an rcwa mapping)

. LargestSourcesOfAffineMappings(f) (attribute)

Returns: the coarsest partition of Source(f) on whose elements the rcwa mapping f is affine.

RCWA 18

Example

gap> LargestSourcesOfAffineMappings(ClassShift(3,7));

[Z \ 3(7), 3(7)]

gap> LargestSourcesOfAffineMappings(ClassReflection(0,1));

[Integers]

gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;

gap> List([u, u^-1], LargestSourcesOfAffineMappings);

[[0(5), 1(5), 2(5), 3(5), 4(5)], [0(3), 1(3), 2(9), 5(9), 8(9)]]

gap> kappa := ClassTransposition(2,4,3,4) * ClassTransposition(4,6,8,12)

> * ClassTransposition(3,4,4,6);

<rcwa permutation of Z with modulus 12>

gap> LargestSourcesOfAffineMappings(kappa);

[2(4), 1(4) U 0(12), 3(12) U 7(12), 4(12), 8(12), 11(12)]

2.4.2 FixedPointsOfAffinePartialMappings (for an rcwa mapping)

. FixedPointsOfAffinePartialMappings(f) (attribute)

Returns: a list of the sets of fixed points of the affine partial mappings of the rcwa mapping f in
the quotient field of its source.

The returned list contains entries for the restrictions of f to all residue classes modulo Mod(f).
A list entry can either be an empty set, the source of f or a set of cardinality 1. The ordering of the
entries corresponds to the ordering of the residues in AllResidues(Source(f),m).

Example

gap> FixedPointsOfAffinePartialMappings(ClassShift(0,2));

[[], Rationals]

gap> List([1..3],k->FixedPointsOfAffinePartialMappings(T^k));

[[[0], [-1]], [[0], [1], [2], [-1]],

[[0], [-7], [2/5], [-5], [4/5], [1/5], [-10], [-1]]]

2.4.3 Multpk (for an rcwa mapping, a prime and an exponent)

. Multpk(f, p, k) (operation)

Returns: the union of the residue classes r(m) such that pk||ar(m) if k ≥ 0, and the union of the
residue classes r(m) such that pk||cr(m) if k≤ 0. In this context, m denotes the modulus of f , and ar(m)

and cr(m) denote the coefficients of f as introduced in Section 2.1.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.

gap> [Multpk(T,2,-1), Multpk(T,3,1)];

[Integers, 1(2)]

gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;

gap> [Multpk(u,3,0), Multpk(u,3,1), Multpk(u,3,2), Multpk(u,5,-1)];

[[], 0(5) U 2(5), Z \ 0(5) U 2(5), Integers]

RCWA 19

There are attributes ClassWiseOrderPreservingOn, ClassWiseConstantOn and
ClassWiseOrderReversingOn which store the union of the residue classes (mod Mod(f)) on
which an rcwa mapping f of Z or of a semilocalization thereof is class-wise order-preserving,
class-wise constant or class-wise order-reversing, respectively.

Example

gap> List([ClassTransposition(1,2,0,4),ClassShift(2,3),

> ClassReflection(2,5)],ClassWiseOrderPreservingOn);

[Integers, Integers, Z \ 2(5)]

Also there are attributes ShiftsUpOn and ShiftsDownOn which store the union of the residue classes
(mod Mod(f)) on which an rcwa mapping f of Z induces affine mappings n 7→ n+ c for c > 0,
respectively, c < 0.

Finally, there are epimorphisms from the subgroup of RCWA(Z) formed by all class-wise order-
preserving elements to (Z,+) and from RCWA(Z) itself to the cyclic group of order 2, respectively:

2.4.4 Determinant (of an rcwa mapping of Z)

. Determinant(f) (method)

Returns: the determinant of the rcwa mapping f of Z.
The determinant of an affine mapping n 7→ (an+ b)/c whose source is a residue class r(m) is

defined by b/|a|m. This definition is extended additively to determinants of rcwa mappings.
Let f be an rcwa mapping of the integers, and let m denote its modulus. Using the notation

f |r(m) : n 7→ (ar(m) · n+ br(m))/cr(m) for the affine partial mappings, the determinant det(f) of f is
given by

∑
r(m)∈Z/mZ

br(m)/(|ar(m)| ·m).

The determinant mapping is an epimorphism from the group of all class-wise order-preserving rcwa
permutations of Z to (Z,+), see [Koh05], Theorem 2.11.9.

Example

gap> List([ClassTransposition(0,4,5,12),ClassShift(3,7)],Determinant);

[0, 1]

gap> Determinant(ClassTransposition(0,4,5,12)*ClassShift(3,7)^100);

100

2.4.5 Sign (of an rcwa permutation of Z)

. Sign(g) (attribute)

Returns: the sign of the rcwa permutation g of Z.
Let σ be an rcwa permutation of the integers, and let m denote its modulus. Using the notation

σ |r(m) : n 7→ (ar(m) ·n+br(m))/cr(m) for the affine partial mappings, the sign of σ is defined by

(−1)

det(σ)+ ∑
r(m): ar(m)<0

m−2r
m

.

RCWA 20

The sign mapping is an epimorphism from RCWA(Z) to the group Z× of units of Z, see [Koh05],
Theorem 2.12.8. Therefore the kernel of the sign mapping is a normal subgroup of RCWA(Z) of
index 2. The simple group CT(Z) is a subgroup of this kernel.

Example

gap> List([ClassTransposition(3,4,2,6),

> ClassShift(0,3),ClassReflection(2,5)],Sign);

[1, -1, -1]

2.5 Factoring residue-class-wise affine permutations

Factoring group elements into the members of some “nice” set of generators is often helpful.
In this section we describe an operation which attempts to solve this problem for the group
RCWA(Z). Elements of finitely generated rcwa groups can be factored into generators “as usual”,
see PreImagesRepresentative (3.2.3).

2.5.1 FactorizationIntoCSCRCT (for an rcwa permutation of Z)

. FactorizationIntoCSCRCT(g) (attribute)

. Factorization(g) (method)

Returns: a factorization of the rcwa permutation g of Z into class shifts, class reflections and
class transpositions, provided that such a factorization exists and the method finds it.

The method may return fail, stop with an error message or run into an infinite loop. If it returns
a result, this result is always correct.

The problem of obtaining a factorization as described is algorithmically difficult, and this factor-
ization routine is currently perhaps the most sophisticated part of the RCWA package. Information
about the progress of the factorization process can be obtained by setting the info level of the Info
class InfoRCWA (9.5.1) to 2.

By default, prime switches (→ PrimeSwitch (2.5.2)) are taken as one factor. If the option
ExpandPrimeSwitches is set, they are each decomposed into the 6 class transpositions given in
the definition.

By default, the factoring process begins with splitting off factors from the right. This can be
changed by setting the option Direction to "from the left".

By default, a reasonably coarse respected partition of the integral mapping occurring in the final
stage of the algorithm is computed. This can be suppressed by setting the option ShortenPartition

equal to false.
By default, at the end it is checked whether the product of the determined factors indeed equals g .

This check can be suppressed by setting the option NC .
Example

gap> Factorization(Comm(ClassShift(0,3)*ClassReflection(1,2),

> ClassShift(0,2)));

[ClassReflection(2(3)), ClassShift(2(6))^-1, (0(6), 2(6)),

(0(6), 5(6))]

RCWA 21

For purposes of demonstrating the capabilities of the factorization routine, in Section 7.2 Collatz’
permutation is factored. Lothar Collatz has investigated this permutation in 1932. Its cycle structure
is unknown so far.

The permutations of the following kind play an important role in factoring rcwa permutations of Z
into class shifts, class reflections and class transpositions:

2.5.2 PrimeSwitch (p)

. PrimeSwitch(p) (function)

. PrimeSwitch(p, k) (function)

Returns: in the one-argument form the prime switch σp := τ0(8),1(2p) · τ4(8),−1(2p) · τ0(4),1(2p) ·
τ2(4),−1(2p) · τ2(2p),1(4p) · τ4(2p),2p+1(4p), and in the two-argument form the restriction of σp by n 7→ kn.

For an odd prime p, the prime switch σp is an rcwa permutation of Z with modulus 4p, mul-
tiplier p and divisor 2. The key mathematical property of a prime switch is that it is a product of
class transpositions, but that its multiplier and its divisor are coprime anyway. Prime switches can be
distinguished from other rcwa mappings by their GAP property IsPrimeSwitch.

Example

gap> Display(PrimeSwitch(3));

Wild rcwa permutation of Z with modulus 12

/

| (3n+4)/2 if n in 2(4)

| n-1 if n in 5(6) U 8(12)

| n+1 if n in 1(6)

n |-> < n/2 if n in 0(12)

| n-3 if n in 4(12)

| n if n in 3(6)

|

\

gap> Display(PrimeSwitch(3):AsClassMapping);

Wild rcwa permutation of Z with modulus 12

0(12) -> 0(6) loop

1(6) -> 2(6)

2(4) -> 5(6)

3(6) -> 3(6) id

4(12) -> 1(12)

5(6) -> 4(6)

8(12) -> 7(12)

gap> Factorization(PrimeSwitch(3));

[(1(6), 0(8)), (5(6), 4(8)), (0(4), 1(6)), (2(4), 5(6)),

(2(6), 1(12)), (4(6), 7(12))]

Obtaining a factorization of an rcwa permutation into class shifts, class reflections and class trans-
positions is particularly difficult if multiplier and divisor are coprime. A prototype of permutations

RCWA 22

which have this property has been introduced in a different context in [Kel99]:

2.5.3 mKnot (for an odd integer)

. mKnot(m) (function)

Returns: the permutation gm as defined in [Kel99].
The argument m must be an odd integer greater than 1.

Example

gap> Display(mKnot(5));

Wild rcwa permutation of Z with modulus 5

/

| 6n/5 if n in 0(5)

| (4n+1)/5 if n in 1(5)

n |-> < (6n-2)/5 if n in 2(5)

| (4n+3)/5 if n in 3(5)

| (6n-4)/5 if n in 4(5)

\

In his article, Timothy P. Keller shows that a permutation of this type cannot have infinitely many
cycles of any given finite length.

2.6 Extracting roots of residue-class-wise affine mappings

2.6.1 Root (k-th root of an rcwa mapping)

. Root(f, k) (method)

Returns: an rcwa mapping g such that g^k=f , provided that such a mapping exists and that there
is a method available which can determine it.

Currently, extracting roots is implemented for rcwa permutations of finite order.
Example

gap> Root(ClassTransposition(0,2,1,2),100);

(0(8), 2(8), 4(8), 6(8), 1(8), 3(8), 5(8), 7(8))

gap> Display(last:CycleNotation:=false);

Tame rcwa permutation of Z with modulus 8

/

| n+2 if n in Z \ 6(8) U 7(8)

n |-> < n-5 if n in 6(8)

| n-7 if n in 7(8)

\

gap> last^100 = ClassTransposition(0,2,1,2);

true

RCWA 23

2.7 Special functions for non-bijective mappings

2.7.1 RightInverse (of an injective rcwa mapping)

. RightInverse(f) (attribute)

Returns: a right inverse of the injective rcwa mapping f , i.e. a mapping g such that fg = 1.
Example

gap> twice := 2*IdentityRcwaMappingOfZ;

Rcwa mapping of Z: n -> 2n

gap> twice * RightInverse(twice);

IdentityMapping(Integers)

2.7.2 CommonRightInverse (of two injective rcwa mappings)

. CommonRightInverse(l, r) (operation)

Returns: a mapping d such that ld = rd = 1.
The mappings l and r must be injective, and their images must form a partition of their source.

Example

gap> twice := 2*IdentityRcwaMappingOfZ; twiceplus1 := twice+1;

Rcwa mapping of Z: n -> 2n

Rcwa mapping of Z: n -> 2n + 1

gap> Display(CommonRightInverse(twice,twiceplus1));

Rcwa mapping of Z with modulus 2

/

| n/2 if n in 0(2)

n |-> < (n-1)/2 if n in 1(2)

|

\

2.7.3 ImageDensity (of an rcwa mapping)

. ImageDensity(f) (attribute)

Returns: the image density of the rcwa mapping f .
In the notation introduced in the definition of an rcwa mapping, the image density of an rcwa

mapping f is defined by 1
m ∑r(m)∈R/mR |R/cr(m)R|/|R/ar(m)R|. The image density of an injective rcwa

mapping is ≤ 1, and the image density of a surjective rcwa mapping is ≥ 1 (this can be seen easily).
Thus in particular the image density of a bijective rcwa mapping is 1.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.

gap> List([T, ClassShift(0,1), RcwaMapping([[2,0,1]])], ImageDensity);

[4/3, 1, 1/2]

RCWA 24

Given an rcwa mapping f, the function InjectiveAsMappingFrom returns a set S such that the
restriction of f to S is injective, and such that the image of S under f is the entire image of f.

Example

gap> InjectiveAsMappingFrom(T);

0(2)

2.8 On trajectories and cycles of residue-class-wise affine mappings

RCWA provides various methods to compute trajectories of rcwa mappings:

2.8.1 Trajectory (methods for rcwa mappings)

. Trajectory(f, n, length) (method)

. Trajectory(f, n, length, m) (method)

. Trajectory(f, n, terminal) (method)

. Trajectory(f, n, terminal, m) (method)

Returns: the first length iterates in the trajectory of the rcwa mapping f starting at n , respec-
tively the initial part of the trajectory of the rcwa mapping f starting at n which ends at the first
occurrence of an iterate in the set terminal . If the argument m is given, the iterates are reduced
(mod m).

To save memory when computing long trajectories containing huge iterates, the reduction (mod m)
is done each time before storing an iterate. In place of the ring element n , the methods also accept a
finite set of ring elements or a union of residue classes.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.

gap> Trajectory(T,27,15); Trajectory(T,27,20,5);

[27, 41, 62, 31, 47, 71, 107, 161, 242, 121, 182, 91, 137, 206, 103]

[2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 0, 3, 0, 0, 3]

gap> Trajectory(T,15,[1]); Trajectory(T,15,[1],2);

[15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1]

[1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1]

gap> Trajectory(T,ResidueClass(Integers,3,0),Integers);

[0(3), 0(3) U 5(9), 0(3) U 5(9) U 7(9) U 8(27),

<union of 20 residue classes (mod 27) (6 classes)>,

<union of 73 residue classes (mod 81)>, Z \ 10(81) U 37(81), Integers]

2.8.2 Trajectory (methods for rcwa mappings – “accumulated coefficients”)

. Trajectory(f, n, length, whichcoeffs) (method)

. Trajectory(f, n, terminal, whichcoeffs) (method)

Returns: either the list c of triples of coprime coefficients such that for any k it holds that
n^(f^(k-1)) = (c[k][1]*n + c[k][2])/c[k][3] or the last entry of that list, depending on
whether whichcoeffs is "AllCoeffs" or "LastCoeffs".

RCWA 25

The meanings of the arguments length and terminal are the same as in the methods for
the operation Trajectory described above. In general, computing only the last coefficient triple
(whichcoeffs = "LastCoeffs") needs considerably less memory than computing the entire list.

Example

gap> Trajectory(T,27,[1],"LastCoeffs");

[36472996377170786403, 195820718533800070543, 1180591620717411303424]

gap> (last[1]*27+last[2])/last[3];

1

When dealing with problems like the 3n+1-Conjecture or when determining the degree of tran-
sitivity of the natural action of an rcwa group on its underlying ring, an important task is to determine
the residue classes whose elements get larger or smaller when applying a given rcwa mapping:

2.8.3 IncreasingOn & DecreasingOn (for an rcwa mapping)

. IncreasingOn(f) (attribute)

. DecreasingOn(f) (attribute)

Returns: the union of all residue classes r(m) such that |R/ar(m)R|> |R/cr(m)R| or |R/ar(m)R|<
|R/cr(m)R|, respectively, where R denotes the source, m denotes the modulus and ar(m), br(m) and cr(m)

denote the coefficients of f as introduced in Section 2.1.
If the argument is an rcwa mapping of Z in sparse representation, an option classes is interpreted;

if set, the step of forming the union of the residue classes in question is omitted, and the list of residue
classes is returned instead of their union. This may save time and memory if the modulus is large.

Example

gap> List([1..3],k->IncreasingOn(T^k));

[1(2), 3(4), 3(4) U 1(8) U 6(8)]

gap> List([1..3],k->DecreasingOn(T^k));

[0(2), Z \ 3(4), 0(4) U 2(8) U 5(8)]

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz' permutation

gap> List([-2..2],k->IncreasingOn(a^k));

[Z \ 1(8) U 7(8), 0(2), [], Z \ 0(3), 1(9) U 4(9) U 5(9) U 8(9)]

We assign certain directed graphs to rcwa mappings, which encode the order in which trajectories
may traverse the residue classes modulo some modulus:

2.8.4 TransitionGraph (for an rcwa mapping and a modulus)

. TransitionGraph(f, m) (operation)

Returns: the transition graph of the rcwa mapping f for modulus m .
The transition graph Γ f ,m of f for modulus m is defined as follows:

1. The vertices are the residue classes (mod m).

2. There is an edge from r1(m) to r2(m) if and only if there is some n∈ r1(m) such that n f ∈ r2(m).

RCWA 26

The assignment of the residue classes (mod m) to the vertices of the graph corresponds to the ordering
of the residues in AllResidues(Source(f),m). The result is returned in the format used by the
package GRAPE [Soi16].

There are a couple of operations and attributes which are based on these graphs:

2.8.5 OrbitsModulo (for an rcwa mapping and a modulus)

. OrbitsModulo(f, m) (operation)

Returns: the partition of AllResidues(Source(f),m) corresponding to the weakly connected
components of the transition graph of the rcwa mapping f for modulus m .

Example

gap> OrbitsModulo(ClassTransposition(0,2,1,4),8);

[[0, 1, 4], [2, 5, 6], [3], [7]]

2.8.6 FactorizationOnConnectedComponents (for an rcwa mapping and a modulus)

. FactorizationOnConnectedComponents(f, m) (operation)

Returns: the set of restrictions of the rcwa mapping f to the weakly connected components of
its transition graph Γ f ,m.

The product of the returned mappings is f . They have pairwise disjoint supports, hence any two
of them commute.

Example

gap> sigma := ClassTransposition(1,4,2,4) * ClassTransposition(1,4,3,4)

> * ClassTransposition(3,9,6,18) * ClassTransposition(1,6,3,9);;

gap> List(FactorizationOnConnectedComponents(sigma,36),Support);

[33(36) U 34(36) U 35(36), 9(36) U 10(36) U 11(36),

<union of 23 residue classes (mod 36)> \ [-6, 3]]

2.8.7 TransitionMatrix (for an rcwa mapping and a modulus)

. TransitionMatrix(f, m) (operation)

Returns: the transition matrix of the rcwa mapping f for modulus m .
Let M be this matrix. Then for any two residue classes r1(m),r2(m)∈ R/mR, the entry Mr1(m),r2(m)

is defined by

Mr1(m),r2(m) :=
|R/mR|
|R/m̂R|

·
∣∣{r(m̂) ∈ R/m̂R| r ∈ r1(m)∧ r f ∈ r2(m)

}∣∣ ,
where m̂ is the product of m and the square of the modulus of f . The assignment of the residue
classes (mod m) to the rows and columns of the matrix corresponds to the ordering of the residues in
AllResidues(Source(f),m).

The transition matrix is a weighted adjacency matrix of the corresponding transition graph
TransitionGraph(f,m). The sums of the rows of a transition matrix are always equal to 1.

RCWA 27

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.

gap> Display(TransitionMatrix(T^3,3));

[[1/8, 1/4, 5/8],

[0, 1/4, 3/4],

[0, 3/8, 5/8]]

2.8.8 Sources & Sinks (of an rcwa mapping)

. Sources(f) (attribute)

. Sinks(f) (attribute)

Returns: a list of unions of residue classes modulo the modulus m of the rcwa mapping f , as
described below.

The returned list contains an entry for any strongly connected component of the transition graph
of f for modulus Mod(f) which has only outgoing edges (“source”) or which has only ingoing edges
(“sink”), respectively. The list entry corresponding to such a component is the union of the vertices
belonging to it.

Example

gap> g := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);;

gap> Sources(g); Sinks(g);

[0(4)]

[1(4)]

2.8.9 Loops (of an rcwa mapping)

. Loops(f) (attribute)

Returns: if f is bijective, the list of non-isolated vertices of the transition graph of f for modulus
Mod(f) which carry a loop. In general, the list of vertices of that transition graph which carry a loop,
but which f does not fix setwise.

The returned list may also include supersets of the named residue classes instead if f is affine
even on these.

Example

gap> Loops(ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4));

[0(4), 1(4)]

There is a nice invariant of trajectories of the Collatz mapping:

2.8.10 GluckTaylorInvariant (of a trajectory)

. GluckTaylorInvariant(a) (function)

Returns: the invariant defined in [GT02]. This is (∑l
i=1 ai ·ai mod l+1)/(∑

l
i=1 a2

i), where l denotes
the length of a .

RCWA 28

The argument a must be a list of integers. In [GT02] it is shown that if a is a trajectory of the
‘original’ Collatz mapping n 7→ (n/2 if n even, 3n+ 1 if n odd) starting at an odd integer ≥ 3 and
ending at 1, then the invariant lies in the interval]9/13,5/7[.

Example

gap> C := RcwaMapping([[1,0,2],[3,1,1]]);;

gap> List([3,5..49],n->Float(GluckTaylorInvariant(Trajectory(C,n,[1]))));

[0.701053, 0.696721, 0.708528, 0.707684, 0.706635, 0.695636, 0.711769,

0.699714, 0.707409, 0.693833, 0.710432, 0.706294, 0.714242, 0.699935,

0.714242, 0.705383, 0.706591, 0.698198, 0.712222, 0.714242, 0.709048,

0.69612, 0.714241, 0.701076]

Quite often one can make certain “educated guesses” on the overall behaviour of the tra-
jectories of a given rcwa mapping. For example it is reasonably straightforward to make
the conjecture that all trajectories of the Collatz mapping eventually enter the finite set
{−136,−91,−82,−68,−61,−55,−41,−37,−34,−25,−17,−10,−7,−5,−1,0,1,2}, or that “on
average” the next number in a trajectory of the Collatz mapping is smaller than the preceding one
by a factor of

√
3/2. However it is clear that such guesses can be wrong, and that they therefore

cannot be used to prove anything. Nevertheless they can sometimes be useful:

2.8.11 LikelyContractionCentre (of an rcwa mapping)

. LikelyContractionCentre(f, maxn, bound) (operation)

Returns: a list of ring elements (see below).
This operation tries to compute the contraction centre of the rcwa mapping f . Assuming its

existence this is the unique finite subset S0 of the source of f on which f induces a permutation and
which intersects non-trivially with any trajectory of f . The mapping f is assumed to be contracting,
i.e. to have such a contraction centre. As in general contraction centres are likely not computable, the
methods for this operation are probabilistic and may return wrong results. The argument maxn is a
bound on the starting value and bound is a bound on the elements of the trajectories to be searched.
If the limit bound is exceeded, an Info message on Info level 3 of InfoRCWA is given.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.

gap> S0 := LikelyContractionCentre(T,100,1000);

#I Warning: `LikelyContractionCentre' is highly probabilistic.

The returned result can only be regarded as a rough guess.

See ?LikelyContractionCentre for more information.

[-136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5,

-1, 0, 1, 2]

2.8.12 GuessedDivergence (of an rcwa mapping)

. GuessedDivergence(f) (operation)

Returns: a floating point value which is intended to be a rough guess on how fast the trajectories
of the rcwa mapping f diverge (return value greater than 1) or converge (return value smaller than 1).

Nothing particular is guaranteed.

RCWA 29

Example

gap> GuessedDivergence(T);

#I Warning: GuessedDivergence: no particular return value is guaranteed.

0.866025

2.9 Saving memory – the sparse representation of rcwa mappings

It is quite common that an rcwa mapping with large modulus has only few distinct affine partial map-
pings. In this case the “standard” representation which stores a coefficient triple for each residue class
modulo the modulus is unsuitable. For this reason there is a second representation of rcwa mappings,
the “sparse” representation. Depending on the rcwa mappings involved, using this representation may
speed up computations and reduce memory requirements by orders of magnitude. For rcwa mappings
with almost as many distinct affine partial mappings as there are residue classes modulo the modu-
lus, using sparse representation makes computations somewhat slower and more memory-consuming.
Presently, the sparse representation is only available for rcwa mappings of Z.

The sparse representation of an rcwa mapping consists of the modulus and a list of 5-tuples
(r,m,ar(m),br(m),cr(m)) of integers. Any such 5-tuple specifies the coefficients of the restriction
n 7→ (ar(m) · n+ br(m))/cr(m) of the mapping to a residue class r(m). The r(m) are chosen to form
the coarsest possible partition of Z into residue classes such that the restriction of the mapping
to any of them is affine. Also the list of coefficient triples is sorted, all cr(m) are positive and
gcd(cr(m),gcd(ar(m),br(m))) = 1. This way the coefficient list of an rcwa mapping of Z is unique.

Changing the representation of rcwa mappings does not change their behaviour with respect to
“=” and “<” The product of two rcwa mappings in sparse representation is in sparse representation
again, just like the product of two rcwa mappings in standard representation is in standard represen-
tation. Also, inverses are in the same representation. The product of two rcwa mappings in different
representation may be in any of the representations of the factors.

2.9.1 SparseRepresentation (of an rcwa mapping)

. SparseRepresentation(f) (operation)

. SparseRep(f) (operation)

. StandardRepresentation(f) (operation)

. StandardRep(f) (operation)

Returns: the rcwa mapping f in sparse, respectively, standard representation.
Appropriate attribute values and properties are copied over to the rcwa mapping in the “new”

representation.
Example

gap> a := ClassTransposition(1,2,4,6);

(1(2), 4(6))

gap> b := ClassTransposition(1,3,2,6);

(1(3), 2(6))

gap> c := ClassTransposition(2,3,4,6);

(2(3), 4(6))

gap> g := (b*a*c)^2*a;

<rcwa permutation of Z with modulus 288>

RCWA 30

gap> h := SparseRep(g);

<rcwa permutation of Z with modulus 288 and 21 affine parts>

gap> g = h;

true

gap> Coefficients(h);

[[0, 6, 1, 0, 1], [1, 3, 16, -1, 3], [2, 96, 9, 14, 16],

[3, 24, 9, 5, 4], [5, 24, 3, 1, 4], [8, 36, 2, -7, 9],

[9, 48, 27, 29, 8], [11, 24, 9, 5, 4], [14, 48, 27, 38, 8],

[15, 24, 27, 19, 4], [17, 48, 9, 7, 8], [20, 72, 3, 4, 4],

[21, 24, 1, -3, 6], [23, 24, 27, 19, 4], [26, 48, 3, 2, 8],

[32, 36, 4, -11, 9], [33, 48, 9, 7, 8], [38, 48, 9, 10, 8],

[41, 48, 27, 29, 8], [50, 96, 27, 58, 16], [56, 72, 1, 0, 4]]

gap> h^2;

<rcwa permutation of Z with modulus 13824 and 71 affine parts>

gap> h^3;

<rcwa permutation of Z with modulus 663552 and 201 affine parts>

Example
gap> MemoryUsage(h^3); # on a 32-bit machine

9978

gap> MemoryUsage(StandardRep(h^3));

23888202

2.10 The categories and families of rcwa mappings

2.10.1 IsRcwaMapping

. IsRcwaMapping(f) (filter)

. IsRcwaMappingOfZ(f) (filter)

. IsRcwaMappingOfZ_pi(f) (filter)

. IsRcwaMappingOfGFqx(f) (filter)

Returns: true if f is an rcwa mapping, an rcwa mapping of the ring of integers, an rcwa mapping
of a semilocalization of the ring of integers or an rcwa mapping of a polynomial ring in one variable
over a finite field, respectively, and false otherwise.

Often the same methods can be used for rcwa mappings of the ring of integers and of its semilo-
calizations. For this reason there is a category IsRcwaMappingOfZOrZ_pi which is the union
of IsRcwaMappingOfZ and IsRcwaMappingOfZ_pi. The internal representation of rcwa map-
pings is called IsRcwaMappingStandardRep. There are methods available for ExtRepOfObj and
ObjByExtRep.

2.10.2 RcwaMappingsFamily (of a ring)

. RcwaMappingsFamily(R) (function)

Returns: the family of rcwa mappings of the ring R .

Chapter 3

Residue-Class-Wise Affine Groups

In this chapter, we describe how to construct residue-class-wise affine groups and how to compute
with them.

3.1 Constructing residue-class-wise affine groups

As any other groups in GAP, residue-class-wise affine (rcwa-) groups can be constructed by Group,
GroupByGenerators or GroupWithGenerators.

Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(0,5));

<rcwa group over Z with 2 generators>

gap> IsTame(G); Size(G); IsSolvable(G); IsPerfect(G);

true

infinity

false

false

An rcwa group isomorphic to a given group can be obtained by taking the image of a faithful rcwa
representation:

3.1.1 IsomorphismRcwaGroup (for a group, over a given ring)

. IsomorphismRcwaGroup(G, R) (attribute)

. IsomorphismRcwaGroup(G) (attribute)

Returns: a monomorphism from the group G to RCWA(R) or to RCWA(Z), respectively.
The best-supported case is R = Z. Currently there are methods available for finite groups, for

free products of finite groups and for free groups. The method for free products of finite groups uses
the Table-Tennis Lemma (cf. e.g. Section II.B. in [dlH00]), and the method for free groups uses an
adaptation of the construction given on page 27 in [dlH00] from PSL(2,C) to RCWA(Z).

Example

gap> F := FreeProduct(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3)),

> SymmetricGroup(3));

<fp group on the generators [f1, f2, f3, f4, f5]>

31

RCWA 32

gap> IsomorphismRcwaGroup(F);

[f1, f2, f3, f4, f5] -> [<rcwa permutation of Z with modulus 12>,

<rcwa permutation of Z with modulus 24>,

<rcwa permutation of Z with modulus 12>,

<rcwa permutation of Z with modulus 72>,

<rcwa permutation of Z with modulus 36>]

gap> IsomorphismRcwaGroup(FreeGroup(2));

[f1, f2] -> [<wild rcwa permutation of Z with modulus 8>,

<wild rcwa permutation of Z with modulus 8>]

gap> F2 := Image(last);

<wild rcwa group over Z with 2 generators>

Further, new rcwa groups can be constructed from given ones by taking direct products and by
taking wreath products with finite groups or with the infinite cyclic group:

3.1.2 DirectProduct (for rcwa groups over Z)

. DirectProduct(G1, G2, ...) (method)

Returns: an rcwa group isomorphic to the direct product of the rcwa groups over Z given as
arguments.

There is certainly no unique or canonical way to embed a direct product of rcwa groups into
RCWA(Z). This method chooses to embed the groups G1 , G2 , G3 ... via restrictions by n 7→ mn,
n 7→ mn+1, n 7→ mn+2 ... (→ Restriction (3.1.6)), where m denotes the number of groups given
as arguments.

Example

gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;

gap> F2xF2 := DirectProduct(F2,F2);

<wild rcwa group over Z with 4 generators>

gap> Image(Projection(F2xF2,1)) = F2;

true

3.1.3 WreathProduct (for an rcwa group over Z, with a permutation group or (Z,+))

. WreathProduct(G, P) (method)

. WreathProduct(G, Z) (method)

Returns: an rcwa group isomorphic to the wreath product of the rcwa group G over Z with the
finite permutation group P or with the infinite cyclic group Z , respectively.

The first-mentioned method embeds the NrMovedPoints(P)th direct power of G using the
method for DirectProduct, and lets the permutation group P act naturally on the set of residue
classes modulo NrMovedPoints(P). The second-mentioned method restricts (→ Restriction

(3.1.6)) the group G to the residue class 3(4), and maps the generator of the infinite cyclic group Z to
ClassTransposition(0,2,1,2) * ClassTransposition(0,2,1,4).

Example

gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;

gap> F2wrA5 := WreathProduct(F2,AlternatingGroup(5));;

RCWA 33

gap> Embedding(F2wrA5,1);

[<wild rcwa permutation of Z with modulus 8>,

<wild rcwa permutation of Z with modulus 8>] ->

[<wild rcwa permutation of Z with modulus 40>,

<wild rcwa permutation of Z with modulus 40>]

gap> Embedding(F2wrA5,2);

[(1,2,3,4,5), (3,4,5)] -> [(0(5), 1(5), 2(5), 3(5), 4(5)),

(2(5), 3(5), 4(5))]

gap> ZwrZ := WreathProduct(Group(ClassShift(0,1)),Group(ClassShift(0,1)));

<wild rcwa group over Z with 2 generators>

gap> Embedding(ZwrZ,1);

[ClassShift(Z)] ->

[<tame rcwa permutation of Z with modulus 4, of order infinity>]

gap> Embedding(ZwrZ,2);

[ClassShift(Z)] -> [<wild rcwa permutation of Z with modulus 4>]

Also, rcwa groups can be obtained as particular extensions of finite permutation groups:

3.1.4 MergerExtension (for finite permutation groups)

. MergerExtension(G, points, point) (operation)

Returns: roughly spoken, an extension of G by an involution which “merges” points into
point .

The arguments of this operation are a finite permutation group G , a set points of points moved
by G and a single point point moved by G which is not in points .

Let n be the largest moved point of G , and let H be the tame subgroup of CT(Z) which respects
the partition P of Z into the residue classes (mod n), and which acts on P as G acts on {1, . . . ,n}.
Further assume that points = {p1, . . . , pk} and point = p, and put ri := pi− 1, i = 1, . . . ,k and
r := p− 1. Now let σ be the product of the class transpositions τri(n),r+(i−1)n(kn), i = 1, . . . ,k. The
group returned by this operation is the extension of H by the involution σ . – On first reading, this
may look a little complicated, but really the code of the method is only about half as long as this
description.

Example

gap> # First example -- a group isomorphic to PSL(2,Z):

gap> G := MergerExtension(Group((1,2,3)),[1,2],3);

<rcwa group over Z with 2 generators>

gap> Size(G);

infinity

gap> GeneratorsOfGroup(G);

[(0(3), 1(3), 2(3)), (0(3), 2(6)) (1(3), 5(6))]

gap> B := Ball(G,One(G),6:Spheres);;

gap> List(B,Length);

[1, 3, 4, 6, 8, 12, 16]

gap> #

gap> # Second example -- a group isomorphic to Thompson's group V:

gap> G := MergerExtension(Group((1,2,3,4),(1,2)),[1,2],3);

<rcwa group over Z with 3 generators>

gap> Size(G);

infinity

RCWA 34

gap> GeneratorsOfGroup(G);

[(0(4), 1(4), 2(4), 3(4)), (0(4), 1(4)),

(0(4), 2(8)) (1(4), 6(8))]

gap> B := Ball(G,One(G),6:Spheres);;

gap> List(B,Length);

[1, 4, 11, 28, 69, 170, 413]

gap> G = Group(List([[0,2,1,2],[1,2,2,4],[0,2,1,4],[1,4,2,4]],

> ClassTransposition));

true

It is also possible to build an rcwa group from a list of residue classes:

3.1.5 GroupByResidueClasses (the group ‘permuting a given list of residue classes’)

. GroupByResidueClasses(classes) (function)

Returns: the group which is generated by all class transpositions which interchange disjoint
residue classes in classes .

The argument classes must be a list of residue classes.
If the residue classes in classes are pairwise disjoint, then the returned group is the symmetric

group on classes . If any two residue classes in classes intersect non-trivially, then the returned
group is trivial. In many other cases, the returned group is infinite.

Example

gap> G := GroupByResidueClasses(List([[0,2],[0,4],[1,4],[2,4],[3,4]],

> ResidueClass));

<rcwa group over Z with 8 generators>

gap> H := Group(List([[0,2,1,2],[1,2,2,4],[0,2,1,4],[1,4,2,4]],

> ClassTransposition)); # (first) Higman-Thompson group

<(0(2),1(2)),(1(2),2(4)),(0(2),1(4)),(1(4),2(4))>

gap> G = H;

true

Various ways to construct rcwa groups are based on certain monomorphisms from the group
RCWA(R) into itself. Examples are the constructions of direct products and wreath products described
above. The support of the image of such a monomorphism is the image of a given injective rcwa map-
ping. For this reason, these monomorphisms are called restriction monomorphisms. The following
operation computes images of rcwa mappings and -groups under these embeddings of RCWA(R) into
itself:

3.1.6 Restriction (of an rcwa mapping or -group, by an injective rcwa mapping)

. Restriction(g, f) (operation)

. Restriction(G, f) (operation)

Returns: the restriction of the rcwa mapping g (respectively the rcwa group G) by the injective
rcwa mapping f .

By definition, the restriction g f of an rcwa mapping g by an injective rcwa mapping f is the
unique rcwa mapping which satisfies the equation f ·g f = g · f and which fixes the complement of the
image of f pointwise. If f is bijective, the restriction of g by f is just the conjugate of g under f .

RCWA 35

The restriction of an rcwa group G by an injective rcwa mapping f is defined as the group whose
elements are the restrictions of the elements of G by f . The restriction of G by f acts on the image
of f and fixes its complement pointwise.

Example

gap> F2tilde := Restriction(F2,RcwaMapping([[5,3,1]]));

<wild rcwa group over Z with 2 generators>

gap> Support(F2tilde);

3(5)

3.1.7 Induction (of an rcwa mapping or -group, by an injective rcwa mapping)

. Induction(g, f) (operation)

. Induction(G, f) (operation)

Returns: the induction of the rcwa mapping g (respectively the rcwa group G) by the injective
rcwa mapping f .

Induction is the right inverse of restriction, i.e. it is Induction(Restriction(g,f),f) = g

and Induction(Restriction(G,f),f) = G . The mapping g respectively the group G must not
move points outside the image of f .

Example

gap> Induction(F2tilde,RcwaMapping([[5,3,1]])) = F2;

true

Once having constructed an rcwa group, it is sometimes possible to obtain a smaller generating
set by the operation SmallGeneratingSet.

There are methods for the operations View, Display, Print and String which are applicable to
rcwa groups.

Basic attributes of an rcwa group which are derived from the coefficients of its elements are
Modulus, Multiplier, Divisor and PrimeSet. The modulus of an rcwa group is the lcm of the
moduli of its elements if such an lcm exists, i.e. if the group is tame, and 0 otherwise. The multi-
plier respectively divisor of an rcwa group is the lcm of the multipliers respectively divisors of its
elements in case such an lcm exists and ∞ otherwise. The prime set of an rcwa group is the union
of the prime sets of its elements. There are shorthands Mod, Mult and Div defined for Modulus,
Multiplier and Divisor, respectively. An rcwa group is called class-wise translating, integral
or class-wise order-preserving if all of its elements are so. There are corresponding methods avail-
able for IsClassWiseTranslating, IsIntegral and IsClassWiseOrderPreserving. There is a
property IsSignPreserving, which indicates whether a given rcwa group over Z acts on the set of
nonnegative integers. The latter holds for any subgroup of CT(Z) (cf. below).

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(1,3,2,6),

> ClassReflection(2,4));

<rcwa group over Z with 3 generators>

gap> List([Modulus,Multiplier,Divisor,PrimeSet,IsClassWiseTranslating,

> IsIntegral,IsClassWiseOrderPreserving,IsSignPreserving],f->f(G));

[24, 2, 2, [2, 3], false, false, false, false]

RCWA 36

All rcwa groups over a ring R are subgroups of RCWA(R). The group RCWA(R) itself is not finitely
generated, thus cannot be constructed as described above. It is handled as a special case:

3.1.8 RCWA (the group formed by all rcwa permutations of a ring)

. RCWA(R) (function)

Returns: the group RCWA(R) of all residue-class-wise affine permutations of the ring R .
Example

gap> RCWA_Z := RCWA(Integers);

RCWA(Z)

gap> IsSubgroup(RCWA_Z,G);

true

Examples of rcwa permutations can be obtained via Random(RCWA(R)), see Section 3.5. The
number of conjugacy classes of RCWA(Z) of elements of given order is known, cf. Corollary 2.7.1 (b)
in [Koh05]. It can be determined by the function NrConjugacyClassesOfRCWAZOfOrder:

Example

gap> List([2,105],NrConjugacyClassesOfRCWAZOfOrder);

[infinity, 218]

We denote the group which is generated by all class transpositions of the ring R by CT(R). This group
is handled as a special case as well:

3.1.9 CT (the group generated by all class transpositions of a ring)

. CT(R) (function)

. CT(P, Integers) (function)

Returns: the group CT(R) which is generated by all class transpositions of the ring R , respec-
tively, the group CT(P ,Z) which is generated by all class transpositions of Z which interchange residue
classes whose moduli have only odd prime factors in the finite set P .

Example

gap> CT_Z := CT(Integers);

CT(Z)

gap> IsSimple(CT_Z); # One of a number of stored attributes/properties.

true

gap> IsSubgroup(CT_Z,G);

false

gap> V := CT([],Integers);

CT_[](Z)

gap> GeneratorsOfGroup(V);

[(0(2), 1(2)), (1(2), 2(4)), (0(2), 1(4)), (1(4), 2(4))]

gap> G := CT([3],Integers);

CT_[3](Z)

gap> GeneratorsOfGroup(G);

[(0(2), 1(2)), (1(2), 2(4)), (0(2), 1(4)), (1(4), 2(4)),

RCWA 37

(0(3), 1(3)), (1(3), 2(3)), (0(3), 1(9)), (0(3), 4(9)),

(0(3), 7(9)), (0(2), 1(6)), (0(2), 5(6)), (0(3), 1(6)),

(0(4), 1(6)), (0(6), 1(8))]

The group CT(Z) has an outer automorphism which is given by conjugation with n 7→ −n− 1.
This automorphism can be applied to an rcwa mapping of Z or to an rcwa group over Z by the
operation Mirrored. The group Mirrored(G) acts on the nonnegative integers as G acts on the
negative integers, and vice versa.

Example

gap> ct := ClassTransposition(0,2,1,6);

(0(2), 1(6))

gap> Mirrored(ct);

(1(2), 4(6))

gap> G := Group(List([[0,2,1,2],[0,3,2,3],[2,4,1,6]],ClassTransposition));;

gap> ShortOrbits(G,[-100..100],100);

[[0, 1, 2, 3, 4, 5]]

gap> ShortOrbits(Mirrored(G),[-100..100],100);

[[-6, -5, -4, -3, -2, -1]]

Under the hypothesis that CT(Z) is the setwise stabilizer of N0 in RCWA(Z), the elements of CT(Z)
with modulus dividing a given positive integer m are parametrized by the ordered partitions of Z
into m residue classes. The list of these elements for given m can be obtained by the function
AllElementsOfCTZWithGivenModulus, and the numbers of such elements for m ≤ 24 are stored
in the list NrElementsOfCTZWithGivenModulus.

Example

gap> NrElementsOfCTZWithGivenModulus{[1..8]};

[1, 1, 17, 238, 4679, 115181, 3482639, 124225680]

The number of conjugacy classes of CT(Z) of elements of given order is also known under the hy-
pothesis that CT(Z) is the setwise stabilizer of N0 in RCWA(Z). It can be determined by the function
NrConjugacyClassesOfCTZOfOrder.

3.2 Basic routines for investigating residue-class-wise affine groups

In the previous section we have seen how to construct rcwa groups. The purpose of this section is
to describe how to obtain information on the structure of an rcwa group and on its action on the
underlying ring. The easiest way to get a little (but really only a very little!) information on the group
structure is a dedicated method for the operation StructureDescription:

3.2.1 StructureDescription (for an rcwa group)

. StructureDescription(G) (method)

Returns: a string which sometimes gives a little glimpse of the structure of the rcwa group G .

RCWA 38

The attribute StructureDescription for finite groups is documented in the GAP Reference
Manual. Therefore we describe here only issues which are specific to infinite groups, and in particular
to rcwa groups.

Wreath products are denoted by wr, and free products are denoted by *. The infinite cyclic group
(Z,+) is denoted by Z, the infinite dihedral group is denoted by D0 and free groups of rank 2,3,4, . . .
are denoted by F2, F3, F4, While for finite groups the symbol . is used to denote a non-split
extension, for rcwa groups in general it stands for an extension which may be split or not. For wild
groups in most cases it happens that there is a large section on which no structural information can be
obtained. Such sections of the group with unknown structure are denoted by <unknown>. In general,
the structure of a section denoted by <unknown> can be very complicated and very difficult to exhibit.

Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(0,5));;

gap> StructureDescription(G);

"(Z x Z x Z x Z x Z x Z x Z) . (C2 x S7)"

gap> G := Group(ClassTransposition(0,2,1,4),

> ClassShift(2,4),ClassReflection(1,2));;

gap> StructureDescription(G:short);

"Z^2.((S3xS3):2)"

gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;

gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(3),

> CyclicGroup(2))));;

gap> G := DirectProduct(PSL2Z,F2);

<wild rcwa group over Z with 4 generators>

gap> StructureDescription(G);

"(C3 * C2) x F2"

gap> G := WreathProduct(G,CyclicGroup(IsRcwaGroupOverZ,infinity));

<wild rcwa group over Z with 5 generators>

gap> StructureDescription(G);

"((C3 * C2) x F2) wr Z"

gap> Collatz := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);;

gap> G := Group(Collatz,ClassShift(0,1));;

gap> StructureDescription(G:short);

"<unknown>.Z"

The extent to which the structure of an rcwa group can be exhibited automatically is severely
limited. In general, one can find out much more about the structure of a given rcwa group in an
interactive session using the functionality described in the rest of this section and elsewhere in this
manual.

The order of an rcwa group can be computed by the operation Size. An rcwa group is finite if and
only if it is tame and its action on a suitably chosen respected partition (see RespectedPartition

(3.4.1)) is faithful. Hence the problem of computing the order of an rcwa group reduces to the problem
of deciding whether it is tame, the problem of deciding whether it acts faithfully on a respected
partition and the problem of computing the order of the finite permutation group induced on the
respected partition.

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(1,3,2,3),

> ClassReflection(0,5));

RCWA 39

<rcwa group over Z with 3 generators>

gap> Size(G);

46080

For a finite rcwa group, an isomorphism to a permutation group can be computed by
IsomorphismPermGroup:

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(0,3,1,3));;

gap> IsomorphismPermGroup(G);

[(0(2), 1(2)), (0(3), 1(3))] -> [(1,2)(3,4)(5,6), (1,2)(4,5)]

In general the membership problem for rcwa groups is algorithmically unsolvable, see Corollary 4.5
in [Koh10]. A consequence of this is that a membership test “g in G” may run into an infinite loop
if the rcwa permutation g is not an element of the rcwa group G. For tame rcwa groups however
membership can always be decided. For wild rcwa groups, membership can very often be decided
quite quick as well, but – as said – not always. Anyway, if g is contained in G, the membership test
will eventually always return true, provided that there are sufficient computing resources available
(memory etc.).

On Info level 2 of InfoRCWA the membership test provides information on reasons why the given
rcwa permutation is an element of the given rcwa group or not.

The membership test “g in G” recognizes an option OrbitLengthBound. If this option is set,
it returns false once it has computed balls of size exceeding OrbitLengthBound about 1 and g in
G, and these balls are still disjoint. Note however that due to the algorithmic unsolvability of the
membership problem, RCWA has no means to check the correctness of such bound in a given case.
So the correct use of this option has to remain within the full responsibility of the user.

Example

gap> G := Group(ClassShift(0,3),ClassTransposition(0,3,2,6));;

gap> ClassShift(2,6)^7 * ClassTransposition(0,3,2,6)

> * ClassShift(0,3)^-3 in G;

true

gap> ClassShift(0,1) in G;

false

The conjugacy problem for rcwa groups is difficult, and RCWA provides only methods to solve it in
some reasonably easy cases.

Example

gap> IsConjugate(RCWA(Integers),

> ClassTransposition(0,2,1,4),ClassShift(0,1));

false

gap> IsConjugate(CT(Integers),ClassTransposition(0,2,1,6),

> ClassTransposition(1,4,0,8));

true

gap> g := RepresentativeAction(CT(Integers),ClassTransposition(0,2,1,6),

> ClassTransposition(1,4,0,8));

RCWA 40

<rcwa permutation of Z with modulus 48>

gap> ClassTransposition(0,2,1,6)^g = ClassTransposition(1,4,0,8);

true

There is a property IsTame which indicates whether an rcwa group is tame or not:
Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(1,3));;

gap> H := Group(ClassTransposition(0,2,1,6),ClassShift(1,3));;

gap> IsTame(G);

true

gap> IsTame(H);

false

For tame rcwa groups, there are methods for IsSolvable and IsPerfect available, and usually
derived subgroups and subgroup indices can be computed as well. Linear representations of tame
groups over the rationals can be determined by the operation IsomorphismMatrixGroup. Testing a
wild group for solvability or perfectness is currently not always feasible, and wild groups have in gen-
eral no faithful finite-dimensional linear representations. There is a method for Exponent available,
which works basically for any rcwa group.

Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(1,2));;

gap> IsPerfect(G);

false

gap> IsSolvable(G);

true

gap> D1 := DerivedSubgroup(G);; D2 := DerivedSubgroup(D1);;

gap> IsAbelian(D2);

true

gap> Index(G,D1); Index(D1,D2);

infinity

9

gap> StructureDescription(G); StructureDescription(D1);

"(Z x Z x Z) . S3"

"(Z x Z) . C3"

gap> Q := D1/D2;

Group([(), (1,2,4)(3,5,7)(6,8,9), (1,3,6)(2,5,8)(4,7,9)])

gap> StructureDescription(Q);

"C3 x C3"

gap> Exponent(G);

infinity

gap> phi := IsomorphismMatrixGroup(G);;

gap> Display(Image(phi,ClassTransposition(0,2,1,4)));

[[0, 0, 1/2, -1/2, 0, 0],

[0, 0, 0, 1, 0, 0],

[2, 1, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0],

RCWA 41

[0, 0, 0, 0, 0, 1]]

When investigating a group, a basic task is to find relations among the generators:

3.2.2 EpimorphismFromFpGroup (for an rcwa group and a search radius)

. EpimorphismFromFpGroup(G, r) (method)

Returns: an epimorphism from a finitely presented group to the rcwa group G .
The argument r is the “search radius”, i.e. the radius of the ball around 1 which is scanned for

relations. In general, the larger r is chosen the smaller the kernel of the returned epimorphism is. If
the group G has finite presentations, the kernel will in principle get trivial provided that r is chosen
large enough.

Example

gap> a := ClassTransposition(2,4,3,4);;

gap> b := ClassTransposition(4,6,8,12);;

gap> c := ClassTransposition(3,4,4,6);;

gap> G := SparseRep(Group(a,b,c));

<(2(4),3(4)),(4(6),8(12)),(3(4),4(6))>

gap> phi := EpimorphismFromFpGroup(G,6);

[a, b, c] -> [(2(4), 3(4)), (4(6), 8(12)), (3(4), 4(6))]

gap> RelatorsOfFpGroup(Source(phi));

[a^2, b^2, c^2, (b*c)^3, (a*b)^6, (a*b*c*b)^3, (a*b*a*c)^12]

A related very common task is to factor group elements into generators:

3.2.3 PreImagesRepresentative (for an epi. from a free group to an rcwa group)

. PreImagesRepresentative(phi, g) (method)

Returns: a representative of the set of preimages of g under the epimorphism phi from a free
group to an rcwa group.

The epimorphism phi must map the generators of the free group to the generators of the rcwa
group one-by-one.

This method can be used for factoring elements of rcwa groups into generators. The implementa-
tion is based on RepresentativeActionPreImage, see RepresentativeAction (3.3.10).

Quite frequently, computing several preimages is not harder than computing just one, i.e. often
several preimages are found simultaneously. The operation PreImagesRepresentatives takes care
of this. It takes the same arguments as PreImagesRepresentative and returns a list of preimages.
If multiple preimages are found, their quotients give rise to nontrivial relations among the generators
of the image of phi .

Example

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; SetName(a,"a");

gap> b := ClassShift(0,1);; SetName(b,"b");

gap> G := Group(a,b);; # G = <<Collatz permutation>, n -> n + 1>

gap> phi := EpimorphismFromFreeGroup(G);;

gap> g := Comm(a^2*b^4,a*b^3); # a sample element to be factored

<rcwa permutation of Z with modulus 8>

RCWA 42

gap> PreImagesRepresentative(phi,g); # -> a factorization of g

b^-3*(b^-1*a^-1)^2*b^3*a*b^-1*a*b^3

gap> g = b^-4*a^-1*b^-1*a^-1*b^3*a*b^-1*a*b^3; # check

true

gap> g := Comm(a*b,Comm(a,b^3));

<rcwa permutation of Z with modulus 8>

gap> pre := PreImagesRepresentatives(phi,g);

[(b^-1*a^-1)^2*b^2*(b*a)^2*b^-2, b^-1*(a^-1*b)^2*b^2*(a*b^-1)^2*b^-1]

gap> rel := pre[1]/pre[2]; # -> a nontrivial relation

(b^-1*a^-1)^2*b^3*a*b^2*a^-1*b^-2*(b^-1*a)^2*b

gap> rel^phi;

IdentityMapping(Integers)

3.3 The natural action of an rcwa group on the underlying ring

Knowing a natural permutation representation of a group usually helps significantly in computing in
it and in obtaining results on its structure. This holds particularly for the natural action of an rcwa
group on its underlying ring. In this section we describe RCWA’s functionality related to this action.

The support, i.e. the set of moved points, of an rcwa group can be determined by Support or
MovedPoints (these are synonyms). Testing for transitivity on the underlying ring or on a union of
residue classes thereof is often feasible:

Example

gap> G := Group(ClassTransposition(1,2,0,4),ClassShift(0,2));;

gap> IsTransitive(G,Integers);

true

Groups generated by class transpositions of the integers act on the set of nonnega-
tive integers. There is a property IsTransitiveOnNonnegativeIntegersInSupport(G)

which indicates whether such group acts transitively on the set of nonnegative integers
in its support. Since such transitivity test is a computationally hard problem, methods
may fail. If IsTransitiveOnNonnegativeIntegersInSupport returns true, an attribute
TransitivityCertificate is set; this is a record containing components phi, words, classes,
smallpointbound, status and complete as follows:

phi is an epimorphism from a free group to G which maps generators to generators.

words, classes
two lists. – words[i] is a preimage under phi of an element of G which maps all sufficiently
large positive integers in the residue classes classes[i] to smaller nonnegative integers.

smallpointbound

in addition to finding a list of group elements gi such that for any large enough integer n in
the support of G there is some gi such that ngi < n, for verifying transitivity it was necessary
to check that all integers less than or equal to smallpointbound in the support of G lie in the
same orbit.

RCWA 43

status

the string "transitive" in case all checks have been completed successfully.

complete

true in case all checks have been completed successfully.

If one is also interested in parts of this information for possibly intransitive groups, one can ob-
tain it using the operation TryToComputeTransitivityCertificate(G,searchlimit), where
searchlimit is the maximum radius about a point within which smaller points are searched and
taken into consideration. This operation interprets an option abortdensity – if set, the operation
returns the data computed so far once the density of the set of positive integers in the support of G
for which no group element is found which maps them to smaller integers reaches or drops below
abortdensity.

Example

gap> G := Group(List([[0,2,1,2],[0,3,2,3],[1,2,2,4]],

> ClassTransposition));

<(0(2),1(2)),(0(3),2(3)),(1(2),2(4))>

gap> IsTransitiveOnNonnegativeIntegersInSupport(G);

true

gap> TransitivityCertificate(G);

rec(

classes := [[1(2)], [2(6)], [6(12), 10(12)], [0(12)],

[4(12)]], complete := true,

phi := [a, b, c] -> [(0(2), 1(2)), (0(3), 2(3)), (1(2), 2(4))

], smallpointbound := 4, status := "transitive",

words := [a, b, c, b*c, a*b])

gap> G := Group(List([[0,2,1,2],[1,2,2,4],[1,4,2,6]],

> ClassTransposition)); # '3n+1 group'

<(0(2),1(2)),(1(2),2(4)),(1(4),2(6))>

gap> cert := TryToComputeTransitivityCertificate(G,10);

rec(

classes := [[1(2)], [2(4)], [4(32)], [8(24), 44(48), 20(96)],

[0(24), 16(24)]], complete := false,

phi := [a, b, c] -> [(0(2), 1(2)), (1(2), 2(4)), (1(4), 2(6))

], remaining := [12(48), 28(48), 52(96), 84(96)],

smallpointbound := 42, status := "unclear",

words := [a, b, (a*c)^2*b*a*b, c, a*c*b])

gap> Union(Flat(cert.classes));

<union of 90 residue classes (mod 96)>

gap> Difference(Integers,Union(Flat(cert.classes)));

12(48) U 28(48) U 52(96) U 84(96)

gap> cert := TryToComputeTransitivityCertificate(G,20); # try larger bound

rec(

classes := [[1(2)], [2(4)], [4(32)], [8(24), 44(48), 20(96)],

[0(24), 16(24)], [12(768), 268(768)], [28(768), 540(768)]],

complete := false,

phi := [a, b, c] -> [(0(2), 1(2)), (1(2), 2(4)), (1(4), 2(6))

],

remaining := [52(96), 84(96), 60(192), 108(192), 124(192), 172(192),

76(384), 204(384), 220(384), 348(384), 156(768), 396(768),

412(768), 652(768)], smallpointbound := 1074, status := "unclear",

RCWA 44

words := [a, b, (a*c)^2*b*a*b, c, a*c*b, (a*c)^3*b*c*b*a*b,

(a*c)^4*b*a*b*a*b])

gap> Difference(Integers,Union(Flat(cert.classes)));

<union of 44 residue classes (mod 768)>

gap> Intersection([0..100],last);

[52, 60, 76, 84]

Further, there are methods to compute orbits under the action of an rcwa group:

3.3.1 Orbit (for an rcwa group and either a point or a set)

. Orbit(G, point) (method)

. Orbit(G, set) (method)

Returns: the orbit of the point point respectively the set set under the natural action of the
rcwa group G on its underlying ring.

The second argument can either be an element or a subset of the underlying ring of the rcwa
group G . Since orbits under the action of rcwa groups can be finite or infinite, and since infinite orbits
are not necessarily residue class unions, the orbit may either be returned in the form of a list, in the
form of a residue class union or in the form of an orbit object. It is possible to loop over orbits returned
as orbit objects, they can be compared and there is a membership test for them. However note that
equality and membership for such orbits cannot always be decided.

Example

gap> G := Group(ClassShift(0,2),ClassTransposition(0,3,1,3));

<rcwa group over Z with 2 generators>

gap> Orbit(G,0);

Z \ 5(6)

gap> Orbit(G,5);

[5]

gap> Orbit(G,ResidueClass(0,2));

[0(2), 1(6) U 2(6) U 3(6), 1(3) U 3(6), 0(3) U 1(6), 0(3) U 4(6),

1(3) U 0(6), 0(3) U 2(6), 0(6) U 1(6) U 2(6), 2(6) U 3(6) U 4(6),

1(3) U 2(6)]

gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(0,2,1,4),

> ClassReflection(0,3));

<rcwa group over Z with 3 generators>

gap> orb := Orbit(G,2);

<orbit of 2 under <wild rcwa group over Z with 3 generators>>

gap> 1015808 in orb;

true

gap> First(orb,n->ForAll([n,n+2,n+6,n+8,n+30,n+32,n+36,n+38],IsPrime));

-19

3.3.2 GrowthFunctionOfOrbit (for an rcwa group, a point and bounds on radius and
sphere size)

. GrowthFunctionOfOrbit(G, n, r_max, size_max) (operation)

. GrowthFunctionOfOrbit(orb, r_max, size_max) (method)

RCWA 45

Returns: a list whose (r+1)-th entry is the size of the sphere of radius r about n under the action
of the group G , where the argument r_max is the largest possible radius to be considered, and the
computation stops once the sphere size exceeds size_max .

An option "small" is interpreted – see example below. In place of the group G and the point n ,
one can pass as first argument also an rcwa group orbit object orb .

Example

gap> G := Group(List([[0,4,1,4],[0,3,5,6],[0,4,5,6]],ClassTransposition));

<(0(4),1(4)),(0(3),5(6)),(0(4),5(6))>

gap> GrowthFunctionOfOrbit(G,18,100,20);

[1, 1, 2, 3, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 5, 5, 6, 8, 6, 5,

5, 4, 3, 3, 4, 4, 4, 3, 3, 5, 4, 5, 6, 5, 2, 3, 3, 2, 3, 3, 4, 5, 4,

4, 4, 6, 5, 5, 3, 4, 2, 3, 4, 4, 2, 3, 4, 4, 2, 3, 3, 4, 3, 5, 3, 5,

4, 5, 6, 5, 3, 4, 5, 6, 5, 4, 3, 5, 4, 5, 5, 4, 4, 5, 5, 3, 4, 5, 3,

3, 4, 5, 4, 2, 3, 4, 4, 4]

gap> last = GrowthFunctionOfOrbit(Orbit(G,18),100,20);

true

gap> GrowthFunctionOfOrbit(G,18,20,20:small:=[0..100]);

rec(smallpoints := [18, 24, 25, 27, 30, 32, 33, 36, 37, 39, 40, 41,

42, 44, 45, 48, 49, 51, 52, 53, 56, 57, 59, 60, 61, 64, 65, 66,

68, 69, 71, 75, 76, 77, 80, 81, 83, 88, 89, 92, 93, 95, 100],

spheresizes := [1, 1, 2, 3, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 5,

5, 6, 8])

gap> G := Group(List([[0,2,1,2],[1,2,2,4],[1,4,2,6]],ClassTransposition));

<(0(2),1(2)),(1(2),2(4)),(1(4),2(6))>

gap> GrowthFunctionOfOrbit(G,0,100,10000);

[1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 7, 6, 7, 9, 12, 14, 19, 21, 28,

29, 37, 42, 55, 57, 72, 78, 99, 113, 148, 164, 215, 226, 288, 344,

462, 478, 612, 686, 894, 985, 1284, 1416, 1847, 2018, 2620, 2902,

3786, 4167, 5432, 5958, 7749, 8568, 11178]

Given an rcwa group G over Z and an integer n , the operation
DistanceToNextSmallerPointInOrbit(G,n) computes the smallest number d such that
there is a product g of d generators or inverses of generators of G which maps n to an integer with
absolute value less than |n |, provided that the orbit of n contains such integer. RCWA provides a
function to draw pictures of orbits of rcwa groups on Z2. The pictures are written to files in bitmap-
(bmp-) format. The author has successfully tested this feature both under Linux and under Windows,
and the generated pictures can be processed further with many common graphics programs:

3.3.3 DrawOrbitPicture (G, p0, bound, h, w, colored, palette, filename)

. DrawOrbitPicture(G, p0, bound, h, w, colored, palette, filename) (function)

Returns: nothing.
Draws a picture of the orbit(s) of the point(s) p0 under the action of the group G on Z2. The

argument p0 is either one point or a list of points. The argument bound denotes the bound to which
the ball about p0 is to be computed, in terms of absolute values of coordinates. The size of the
generated picture is h x w pixels. The argument colored is a boolean which indicates whether a
24-bit true color picture or a monochrome picture should be generated. In the former case, palette
must be a list of triples of integers in the range 0, . . . ,255, denoting the RGB values of the colors

RCWA 46

to be used. In the latter case, palette is not used, and any value can be passed. The picture is
written in bitmap- (bmp-) format to a file named filename . This is done using the utility function
SaveAsBitmapPicture from ResClasses.

Example

gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(2),

> CyclicGroup(3))));;

gap> DrawOrbitPicture(PSL2Z,[0,1],2000,512,512,false,fail,"example1.bmp");

gap> DrawOrbitPicture(PSL2Z,Combinations([1..4],2),2000,512,512,true,

> [[255,0,0],[0,255,0],[0,0,255]],"example2.bmp");

The pictures drawn in the examples are shown on RCWA’s webpage.
Finite orbits give rise to finite quotients of a group, and finite cycles can help to check for conju-

gacy. Therefore it is important to be able to determine them:

3.3.4 ShortOrbits (for rcwa groups) & ShortCycles (for rcwa permutations)

. ShortOrbits(G, S, maxlng) (operation)

. ShortOrbits(G, S, maxlng, maxn) (operation)

. ShortCycles(g, S, maxlng) (operation)

. ShortCycles(g, S, maxlng, maxn) (operation)

. ShortCycles(g, maxlng) (operation)

Returns: in the first form a list of all orbits of the rcwa group G of length at most maxlng which
intersect non-trivially with the set S . In the second form a list of all orbits of the rcwa group G of
length at most maxlng which intersect non-trivially with the set S and which, in terms of euclidean
norm, do not exceed maxn . In the third form a list of all cycles of the rcwa permutation g of length
at most maxlng which intersect non-trivially with the set S . In the fourth form a list of all cycles
of the rcwa permutation g of length at most maxlng which intersect non-trivially with the set S and
which, in terms of euclidean norm, do not exceed maxn . In the fifth form a list of all cycles of the
rcwa permutation g of length at most maxlng which do not correspond to cycles consisting of residue
classes.

The operation ShortOrbits recognizes an option finite . If this option is set, it is assumed that
all orbits are finite, in order to speed up the computation. If furthermore maxlng is negative, a list of
all orbits which intersect non-trivially with S is returned.

There is an operation CyclesOnFiniteOrbit(G,g,n) which returns a list of all cycles of the
rcwa permutation g on the orbit of the point n under the action of the rcwa group G . Here g is assumed
to be an element of G , and the orbit of n is assumed to be finite.

Example

gap> G := Group(ClassTransposition(1,4,2,4)*ClassTransposition(1,4,3,4),

> ClassTransposition(3,9,6,18)*ClassTransposition(1,6,3,9));;

gap> List(ShortOrbits(G,[-15..15],100),

> orb->StructureDescription(Action(G,orb)));

["A15", "A4", "1", "1", "C3", "1", "((C2 x C2 x C2) : C7) : C3", "1",

"1", "C3", "A19"]

gap> ShortCycles(mKnot(7),[1..100],20);

[[1], [2], [3], [4], [5], [6], [7, 8], [9, 10],

[11, 12], [13, 14, 16, 18, 20, 22, 19, 17, 15], [21, 24],

RCWA 47

[23, 26], [25, 28, 32, 36, 31, 27, 30, 34, 38, 33, 29],

[35, 40], [37, 42, 48, 54, 47, 41, 46, 52, 45, 39, 44, 50, 43],

[77, 88, 100, 114, 130, 148, 127, 109, 124, 107, 122, 105, 120, 103,

89]]

gap> G := Group(List([[0,2,1,2],[0,5,4,5],[1,4,0,6]],ClassTransposition));;

gap> CyclesOnFiniteOrbit(G,G.1*G.2,0);

[[0, 1, 4, 9, 8, 5], [6, 7], [10, 11, 14, 19, 18, 15], [12, 13]]

gap> List(CyclesOnFiniteOrbit(G,G.1*G.2*G.3*G.1*G.3*G.2,32),Length);

[3148, 3148]

3.3.5 ShortResidueClassOrbits & ShortResidueClassCycles

. ShortResidueClassOrbits(G, modulusbound, maxlng) (operation)

. ShortResidueClassCycles(g, modulusbound, maxlng) (operation)

Returns: in the first form a list of all orbits of residue classes under the action of the rcwa group
G which contain a residue class r(m) such that m divides modulusbound and which are not longer
than maxlng . In the second form a list of all cycles of residue classes of the rcwa permutation g

which contain a residue class r(m) such that m divides modulusbound and which are not longer than
maxlng .

We are only talking about a cycle of residue classes of an rcwa permutation g if the restrictions of
g to all contained residue classes are affine. Similarly we are only talking about an orbit of residue
classes under the action of an rcwa group G if the restrictions of all elements of G to all residue classes
in the orbit are affine.

The returned lists may contain additional cycles, resp., orbits, which do not contain a residue class
r(m) such that m divides modulusbound , but which happen to be found without additional efforts.

Example

gap> g := ClassTransposition(0,2,1,2)*ClassTransposition(0,4,1,6);

<rcwa permutation of Z with modulus 12>

gap> ShortResidueClassCycles(g,Mod(g)^2,20);

[[2(12), 3(12)], [10(12), 11(12)], [4(24), 5(24), 7(36), 6(36)],

[20(24), 21(24), 31(36), 30(36)],

[8(48), 9(48), 13(72), 19(108), 18(108), 12(72)],

[40(48), 41(48), 61(72), 91(108), 90(108), 60(72)],

[16(96), 17(96), 25(144), 37(216), 55(324), 54(324), 36(216), 24(144)

],

[80(96), 81(96), 121(144), 181(216), 271(324), 270(324), 180(216),

120(144)]]

gap> G := Group(List([[0,6,5,6],[1,4,4,6],[2,4,3,6]],ClassTransposition));

<(0(6),5(6)),(1(4),4(6)),(2(4),3(6))>

gap> ShortResidueClassOrbits(G,48,10);

[[7(12)], [8(12)], [1(24), 4(36)], [2(24), 3(36)],

[12(24), 17(24), 28(36)], [18(24), 23(24), 27(36)],

[37(48), 58(72), 87(108)], [38(48), 57(72), 88(108)],

[0(48), 5(48), 10(72), 15(108)], [6(48), 11(48), 9(72), 16(108)]]

RCWA 48

3.3.6 ComputeCycleLength (for an rcwa permutation and a point)

. ComputeCycleLength(g, n) (function)

Returns: a record containing the length, the largest point and the position of the largest point of
the cycle of the rcwa permutation g which contains the point n , provided that this cycle is finite.

If the cycle is infinite, the function will run into an infinite loop unless the option "abortat" is set
to the maximum number of iterates to be tried before aborting. Iterates are not stored, to save memory.
The function interprets an option "notify", which defaults to 10000; every “notify” iterations, the
number of binary digits of the latest iterate is printed. This output can be suppressed by the option
quiet. The function also interprets an option "small", which may be set to a range within which
small points are recorded and returned in a component smallpoints.

Example

gap> g := Product(List([[0,5,3,5],[1,2,0,6],[2,4,3,6]],

> ClassTransposition));

<rcwa permutation of Z with modulus 180>

gap> ComputeCycleLength(g,20:small:=[0..1000]);

n = 20: after 10000 steps, the iterate has 1919 binary digits.

n = 20: after 20000 steps, the iterate has 2908 binary digits.

n = 20: after 30000 steps, the iterate has 1531 binary digits.

n = 20: after 40000 steps, the iterate has 708 binary digits.

rec(aborted := false, g := <rcwa permutation of Z with modulus 180>,

length := 45961,

maximum := 180479928411509527091314790144929480041473309862957394384783\

0525935437431021442346166422201250935268553945158085769924448388724679753\

5271669245363980744610119632280105994423399614803956244808653465492205657\

8650363041608376587943180444494842094693691286183613056599672737336761093\

3101035841077322874883200384115281051837032147150147712534199292886436789\

7520389780289517825203780151058517520194926468391308525704499649905091899\

9667529835495635671154681958992898010506577172313321500572646883756736685\

0158653917532084531267455434808219032998691038943070902228427549279555530\

6429870190316109419051531138721361826083376315737131067799731181096142797\

4868525347003646887454985757711743327946232372385342293662007684758208408\

8635715976464060647431260835037213863991037813998261883899050447111540742\

5857187943077255493709629738212709349458790098815926920248565399938335540\

8092502449690267365120996852, maxpos := 19825, n := 20,

smallpoints := [20, 23, 66, 99, 294, 295, 298, 441, 447, 882, 890,

893])

3.3.7 CycleRepresentativesAndLengths (for rcwa permutation and set of seed points)

. CycleRepresentativesAndLengths(g, S) (operation)

Returns: a list of pairs (cycle representative, length of cycle) for all cycles of the rcwa permuta-
tion g which have a nontrivial intersection with the set S , where fixed points are omitted.

The rcwa permutation g is assumed to have only finite cycles. If g has an infinite cycle which
intersects non-trivially with S , this may cause an infinite loop unless a cycle length limit is set via the
option abortat. The output can be suppressed by the option quiet.

Example

gap> g := ClassTransposition(0,2,1,2)*ClassTransposition(0,4,1,6);;

RCWA 49

gap> CycleRepresentativesAndLengths(g,[0..50]);

[[2, 2], [4, 4], [8, 6], [10, 2], [14, 2], [16, 8],

[20, 4], [22, 2], [26, 2], [28, 4], [32, 10], [34, 2],

[38, 2], [40, 6], [44, 4], [46, 2], [50, 2]]

gap> g := Product(List([[0,5,3,5],[1,2,0,6],[2,4,3,6]],

> ClassTransposition));

<rcwa permutation of Z with modulus 180>

gap> CycleRepresentativesAndLengths(g,[0..100]:abortat:=100000);

n = 20: after 10000 steps, the iterate has 1919 binary digits.

n = 20: after 20000 steps, the iterate has 2908 binary digits.

n = 20: after 30000 steps, the iterate has 1531 binary digits.

n = 20: after 40000 steps, the iterate has 708 binary digits.

n = 79: after 10000 steps, the iterate has 1679 binary digits.

n = 100: after 10000 steps, the iterate has 712 binary digits.

n = 100: after 20000 steps, the iterate has 2507 binary digits.

n = 100: after 30000 steps, the iterate has 3311 binary digits.

n = 100: after 40000 steps, the iterate has 3168 binary digits.

n = 100: after 50000 steps, the iterate has 3947 binary digits.

n = 100: after 60000 steps, the iterate has 4793 binary digits.

n = 100: after 70000 steps, the iterate has 5325 binary digits.

n = 100: after 80000 steps, the iterate has 6408 binary digits.

n = 100: after 90000 steps, the iterate has 7265 binary digits.

n = 100: after 100000 steps, the iterate has 7918 binary digits.

[[0, 7], [5, 3], [7, 7159], [11, 9], [19, 342],

[20, 45961], [25, 3], [26, 21], [29, 2], [31, 3941],

[34, 19], [37, 7], [40, 5], [41, 7], [46, 3], [49, 2],

[59, 564], [61, 577], [65, 3], [67, 23], [71, 41],

[79, 16984], [80, 5], [85, 3], [86, 3], [89, 2], [91, 9],

[94, 1355], [97, 7], [100, fail]]

Often one also wants to know which residue classes an rcwa mapping or an rcwa group fixes
setwise:

3.3.8 FixedResidueClasses (for rcwa mapping and bound on modulus)

. FixedResidueClasses(g, maxmod) (operation)

. FixedResidueClasses(G, maxmod) (operation)

Returns: the set of residue classes with modulus greater than 1 and less than or equal to maxmod

which the rcwa mapping g , respectively the rcwa group G , fixes setwise.
Example

gap> FixedResidueClasses(ClassTransposition(0,2,1,4),8);

[2(3), 3(4), 4(5), 6(7), 3(8), 7(8)]

gap> FixedResidueClasses(Group(ClassTransposition(0,2,1,4),

> ClassTransposition(0,3,1,3)),12);

[2(3), 8(9), 11(12)]

Frequently one needs to compute balls of certain radius around points or group elements, be it to
estimate the growth of a group, be it to see how an orbit looks like, be it to search for a group element
with certain properties or be it for other purposes:

RCWA 50

3.3.9 Ball (for group, element and radius or group, point, radius and action)

. Ball(G, g, r) (method)

. Ball(G, p, r, action) (method)

. Ball(G, p, r) (method)

Returns: the ball of radius r around the element g in the group G , respectively the ball of radius r
around the point p under the action action of the group G , respectively the ball of radius r around
the point p under the action OnPoints of the group G ,

All balls are understood with respect to GeneratorsOfGroup(G). As membership tests can be
expensive, the former method does not check whether g is indeed an element of G . The methods
require that element- / point comparisons are cheap. They are not only applicable to rcwa groups.
If the option Spheres is set, the ball is split up and returned as a list of spheres. There is a related
operation RestrictedBall(G,g,r,modulusbound) specifically for rcwa groups which computes
only those elements of the ball whose moduli do not exceed modulusbound , and which can be reached
from g without computing intermediate elements whose moduli do exceed modulusbound .

Example

gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(2),

> CyclicGroup(3))));;

gap> List([1..10],k->Length(Ball(PSL2Z,[0,1],k,OnTuples)));

[4, 8, 14, 22, 34, 50, 74, 106, 154, 218]

gap> Ball(Group((1,2),(2,3),(3,4)),(),2:Spheres);

[[()], [(3,4), (2,3), (1,2)],

[(2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,3,2)]]

gap> G := Group(List([[1,2,4,6],[1,3,2,6],[2,3,4,6]],ClassTransposition));;

gap> B := RestrictedBall(G,One(G),20,36:Spheres);; # try replacing 36 by 72

gap> List(B,Length);

[1, 3, 6, 12, 4, 6, 6, 4, 4, 4, 6, 6, 3, 3, 2, 0, 0, 0, 0, 0, 0]

It is possible to determine group elements which map a given tuple of elements of the underlying
ring to a given other tuple, if such elements exist:

3.3.10 RepresentativeAction (G, source, destination, action)

. RepresentativeAction(G, source, destination, action) (method)

Returns: an element of G which maps source to destination under the action given
by action .

If an element satisfying this condition does not exist, this method either returns fail or runs into
an infinite loop. The problem whether source and destination lie in the same orbit under the
action action of G is hard, and in its general form most likely computationally undecidable.

In cases where rather a word in the generators of G than the actual group element is needed, one
should use the operation RepresentativeActionPreImage instead. This operation takes five argu-
ments. The first four are the same as those of RepresentativeAction, and the fifth is a free group
whose generators are to be used as letters of the returned word. Note that RepresentativeAction
calls RepresentativeActionPreImage and evaluates the returned word. The evaluation of the word
can very well take most of the time if G is wild and coefficient explosion occurs.

The algorithm is based on computing balls of increasing radius around source and destination
until they intersect non-trivially.

RCWA 51

Example

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; SetName(a,"a");

gap> b := ClassShift(1,4:Name:="b");; G := Group(a,b);;

gap> elm := RepresentativeAction(G,[7,4,9],[4,5,13],OnTuples);;

gap> Display(elm);

Rcwa permutation of Z with modulus 12

/

| n-3 if n in 1(6) U 10(12)

| n+4 if n in 5(12) U 9(12)

n |-> < n+1 if n in 4(12)

| n if n in 0(6) U 2(6) U 3(12) U 11(12)

|

\

gap> List([7,4,9],n->n^elm);

[4, 5, 13]

gap> elm := RepresentativeAction(G,[6,-3,8],[-9,4,11],OnPoints);;

gap> Display(elm);

Rcwa permutation of Z with modulus 12

/

| 2n/3 if n in 0(6) U 3(12)

| (4n+1)/3 if n in 2(6) U 11(12)

| (4n-1)/3 if n in 4(6) U 7(12)

n |-> < (2n-8)/3 if n in 1(12)

| (4n-17)/3 if n in 5(12)

| (4n-15)/3 if n in 9(12)

|

\

gap> [6,-3,8]^elm; List([6,-3,8],n->n^elm); # `OnPoints' allows reordering

[-9, 4, 11]

[4, -9, 11]

gap> F := FreeGroup("a","b");; phi := EpimorphismByGenerators(F,G);;

gap> w := RepresentativeActionPreImage(G,[10,-4,9,5],[4,5,13,-8],

> OnTuples,F);

a*b^-1*a^-1*(b^-1*a)^2*b*a*b^-2*a*b*a^-1*b

gap> elm := w^phi;

<rcwa permutation of Z with modulus 324>

gap> List([10,-4,9,5],n->n^elm);

[4, 5, 13, -8]

Sometimes an rcwa group fixes a certain partition of the underlying ring into unions of residue
classes. If this happens, then any orbit is clearly a subset of exactly one of these parts. Further, such a
partition often gives rise to proper quotients of the group:

RCWA 52

3.3.11 ProjectionsToInvariantUnionsOfResidueClasses (for rcwa group and modulus)

. ProjectionsToInvariantUnionsOfResidueClasses(G, m) (operation)

Returns: the projections of the rcwa group G to the unions of residue classes (mod m) which it
fixes setwise.

The corresponding partition of a set of representatives for the residue classes (mod m) can be
obtained by the operation OrbitsModulo(G,m).

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassShift(3,4));;

gap> ProjectionsToInvariantUnionsOfResidueClasses(G,4);

[[(0(2), 1(2)), ClassShift(3(4))] ->

[(0(4), 1(4)), IdentityMapping(Integers)],

[(0(2), 1(2)), ClassShift(3(4))] ->

[(2(4), 3(4)), <rcwa permutation of Z with modulus 4>]]

gap> List(last,phi->Support(Image(phi)));

[0(4) U 1(4), 2(4) U 3(4)]

Given two partitions of the underlying ring into the same number of unions of residue classes,
there is always an rcwa permutation which maps the one to the other:

3.3.12 RepresentativeAction (for RCWA(R) and 2 partitions of R into residue classes)

. RepresentativeAction(RCWA(R), P1, P2) (method)

Returns: an element of RCWA(R) which maps the partition P1 to P2 .
The arguments P1 and P2 must be partitions of the underlying ring R into the same number of

unions of residue classes. The method for R = Z recognizes the option IsTame, which can be used to
demand a tame result. If this option is set and there is no tame rcwa permutation which maps P1 to P2 ,
the method runs into an infinite loop. This happens if the condition in Theorem 2.8.9 in [Koh05] is not
satisfied. If the option IsTame is not set and the partitions P1 and P2 both consist entirely of single
residue classes, then the returned mapping is affine on any residue class in P1 .

Example

gap> P1 := AllResidueClassesModulo(3);

[0(3), 1(3), 2(3)]

gap> P2 := List([[0,2],[1,4],[3,4]],ResidueClass);

[0(2), 1(4), 3(4)]

gap> elm := RepresentativeAction(RCWA(Integers),P1,P2);

<rcwa permutation of Z with modulus 3>

gap> P1^elm = P2;

true

gap> IsTame(elm);

false

gap> elm := RepresentativeAction(RCWA(Integers),P1,P2:IsTame);

<tame rcwa permutation of Z with modulus 24>

gap> P1^elm = P2;

true

gap> elm := RepresentativeAction(RCWA(Integers),

> [ResidueClass(1,3),

> ResidueClassUnion(Integers,3,[0,2])],

RCWA 53

> [ResidueClassUnion(Integers,5,[2,4]),

> ResidueClassUnion(Integers,5,[0,1,3])]);

<rcwa permutation of Z with modulus 6>

gap> [ResidueClass(1,3),ResidueClassUnion(Integers,3,[0,2])]^elm;

[2(5) U 4(5), Z \ 2(5) U 4(5)]

3.3.13 CollatzLikeMappingByOrbitTree (for rcwa group, root point and range of
radii)

. CollatzLikeMappingByOrbitTree(G, n, min_r, max_r) (operation)

Returns: either an rcwa mapping f which maps the sphere of radius r about n under the action
of G into the sphere of radius r−1 about n for every r ranging from min_r to max_r , or fail.

Obviously not for every rcwa group and every root point a mapping f with these properties exists,
and if it exists, it usually depends on the choice of generators of the group.

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(1,2,2,4),

> ClassTransposition(1,4,2,6));;

gap> G := SparseRep(G);;

gap> f := CollatzLikeMappingByOrbitTree(G,0,4,10);

<rcwa mapping of Z with modulus 4 and 4 affine parts>

gap> Display(f);

Rcwa mapping of Z with modulus 4 and 4 affine parts

/

| n+1 if n in 0(4)

| (3n+1)/2 if n in 1(4)

n |-> < n/2 if n in 2(4)

| n-1 if n in 3(4)

|

\

gap> B := Ball(G,0,15:Spheres);

[[0], [1], [2], [3], [6], [7], [14], [9, 15], [8, 18, 30],

[5, 19, 31], [4, 10, 38, 62], [11, 25, 39, 41, 63],

[22, 24, 40, 50, 78, 82, 126], [23, 33, 51, 79, 83, 127],

[32, 46, 66, 102, 158, 166, 254],

[21, 47, 67, 103, 105, 159, 167, 169, 255]]

gap> List([3..15],i->IsSubset(B[i-1],B[i]^f));

[true, true, true, true, true, true, true, true, true, true, true, true,

true]

gap> Trajectory(f,52,[0,1]);

[52, 53, 80, 81, 122, 61, 92, 93, 140, 141, 212, 213, 320, 321, 482, 241,

362, 181, 272, 273, 410, 205, 308, 309, 464, 465, 698, 349, 524, 525, 788,

789, 1184, 1185, 1778, 889, 1334, 667, 666, 333, 500, 501, 752, 753, 1130,

565, 848, 849, 1274, 637, 956, 957, 1436, 1437, 2156, 2157, 3236, 3237,

4856, 4857, 7286, 3643, 3642, 1821, 2732, 2733, 4100, 4101, 6152, 6153,

9230, 4615, 4614, 2307, 2306, 1153, 1730, 865, 1298, 649, 974, 487, 486,

243, 242, 121, 182, 91, 90, 45, 68, 69, 104, 105, 158, 79, 78, 39, 38, 19,

RCWA 54

18, 9, 14, 7, 6, 3, 2, 1]

3.4 Special attributes of tame residue-class-wise affine groups

There are a couple of attributes which a priori make only sense for tame rcwa groups. With their help,
various structural information about a given such group can be obtained. We have already seen above
that there are for example methods for IsSolvable, IsPerfect and DerivedSubgroup available
for tame rcwa groups, while testing wild groups for solvability or perfectness is currently not always
feasible. The purpose of this section is to describe the specific attributes of tame groups which are
needed for these computations.

3.4.1 RespectedPartition (of a tame rcwa group or -permutation)

. RespectedPartition(G) (attribute)

. RespectedPartition(g) (attribute)

Returns: a shortest and coarsest possible respected partition of the rcwa group G / of the rcwa
permutation g .

A tame element g ∈ RCWA(R) permutes a partition of R into finitely many residue classes on all
of which it is affine. Given a tame group G < RCWA(R), there is a common such partition for all
elements of G. We call the mentioned partitions respected partitions of g or G, respectively.

An rcwa group or an rcwa permutation has a respected partition if and only if it is tame. This holds
either by definition or by Theorem 2.5.8 in [Koh05], depending on how one introduces the notion of
tameness.

There is an operation RespectsPartition(G,P) / RespectsPartition(g,P), which tests
whether G or g respects a given partition P . The permutation induced by g on P can be computed
efficiently by PermutationOpNC(g,P,OnPoints).

Example

gap> G := Group(ClassTransposition(0,4,1,6),ClassShift(0,2));

<rcwa group over Z with 2 generators>

gap> IsTame(G);

true

gap> Size(G);

infinity

gap> P := RespectedPartition(G);

[0(4), 2(4), 1(6), 3(6), 5(6)]

3.4.2 ActionOnRespectedPartition & KernelOfActionOnRespectedPartition

. ActionOnRespectedPartition(G) (attribute)

. KernelOfActionOnRespectedPartition(G) (attribute)

. RankOfKernelOfActionOnRespectedPartition(G) (attribute)

Returns: the action of the tame rcwa group G on RespectedPartition(G), the kernel of this
action or the rank of the latter, respectively.

RCWA 55

The method for KernelOfActionOnRespectedPartition uses the package
Polycyclic [EHN13]. The rank of the largest free abelian subgroup of the ker-
nel of the action of G on its stored respected partition can be computed by
RankOfKernelOfActionOnRespectedPartition(G).

Example

gap> G := Group(ClassTransposition(0,4,1,6),ClassShift(0,2));;

gap> H := ActionOnRespectedPartition(G);

Group([(1,3), (1,2)])

gap> H = Action(G,P);

true

gap> Size(H);

6

gap> K := KernelOfActionOnRespectedPartition(G);

<rcwa group over Z with 3 generators>

gap> RankOfKernelOfActionOnRespectedPartition(G);

3

gap> Index(G,K);

6

gap> List(GeneratorsOfGroup(K),Factorization);

[[ClassShift(0(4))], [ClassShift(2(4))], [ClassShift(1(6))]]

gap> Image(IsomorphismPcpGroup(K));

Pcp-group with orders [0, 0, 0]

Let G be a tame rcwa group over Z, let P be a respected partition of G and put m := |P|. Then
there is an rcwa permutation g which maps P to the partition of Z into the residue classes (mod m),
and the conjugate Gg of G under such a permutation is integral (cf. [Koh05], Theorem 2.5.14).

The conjugate Gg can be determined by the operation IntegralConjugate, and the conjugating
permutation g can be determined by the operation IntegralizingConjugator. Both operations are
applicable to rcwa permutations as well. Note that a tame rcwa group does not determine its integral
conjugate uniquely.

Example

gap> G := Group(ClassTransposition(0,4,1,6),ClassShift(0,2));;

gap> G^IntegralizingConjugator(G) = IntegralConjugate(G);

true

gap> RespectedPartition(G);

[0(4), 2(4), 1(6), 3(6), 5(6)]

gap> RespectedPartition(G)^IntegralizingConjugator(G);

[0(5), 1(5), 2(5), 3(5), 4(5)]

gap> last = RespectedPartition(IntegralConjugate(G));

true

3.5 Generating pseudo-random elements of RCWA(R) and CT(R)

There are methods for the operation Random for RCWA(R) and CT(R). These methods are designed
to be suitable for generating interesting examples. No particular distribution is guaranteed.

RCWA 56

Example

gap> elm := Random(RCWA(Integers));;

gap> Display(elm);

Rcwa permutation of Z with modulus 180

/

| 6n+12 if n in 2(10) U 4(10) U 6(10) U 8(10)

| 3n+3 if n in 1(20) U 5(20) U 9(20) U 17(20)

| 6n+10 if n in 0(10)

| (n+1)/2 if n in 15(60) U 27(60) U 39(60) U 51(60)

| (n+7)/2 if n in 19(60) U 31(60) U 43(60) U 55(60)

| 3n+1 if n in 13(20)

| (-n+17)/6 if n in 23(180) U 35(180) U 59(180) U 71(180) U

n |-> < 95(180) U 131(180) U 143(180) U 179(180)

| (-n-1)/6 if n in 11(180) U 47(180) U 83(180) U 155(180)

| (-n+7)/2 if n in 3(60)

| (n+3)/2 if n in 7(60)

| (n-17)/6 if n in 107(180)

| (-n+11)/6 if n in 119(180)

| (-n+29)/6 if n in 167(180)

|

\

The elements which are returned by this method are obtained by multiplying class shifts (see
ClassShift (2.2.1)), class reflections (see ClassReflection (2.2.2)) and class transpositions (see
ClassTransposition (2.2.3)). These factors can be retrieved by factoring:

Example

gap> Factorization(elm);

[ClassTransposition(0,2,3,4), ClassTransposition(1,2,4,6), ClassShift(0,2),

ClassShift(1,3), ClassReflection(2,5), ClassReflection(1,3),

ClassReflection(1,2)]

3.6 The categories of residue-class-wise affine groups

3.6.1 IsRcwaGroup

. IsRcwaGroup(G) (filter)

. IsRcwaGroupOverZ(G) (filter)

. IsRcwaGroupOverZ_pi(G) (filter)

. IsRcwaGroupOverGFqx(G) (filter)

Returns: true if G is an rcwa group, an rcwa group over the ring of integers, an rcwa group over
a semilocalization of the ring of integers or an rcwa group over a polynomial ring in one variable over
a finite field, respectively, and false otherwise.

Often the same methods can be used for rcwa groups over the ring of integers and over its semilo-
calizations. For this reason there is a category IsRcwaGroupOverZOrZ_pi which is the union of

RCWA 57

IsRcwaGroupOverZ and IsRcwaGroupOverZ_pi.
To allow distinguishing the groups RCWA(R) and CT(R) from others, they have the characteristic

property IsNaturalRCWA or IsNaturalCT, respectively.

Chapter 4

Residue-Class-Wise Affine Monoids

In this short chapter, we describe how to compute with residue-class-wise affine monoids. Residue-
class-wise affine monoids, or rcwa monoids for short, are monoids whose elements are residue-class-
wise affine mappings.

4.1 Constructing residue-class-wise affine monoids

As any other monoids in GAP, residue-class-wise affine monoids can be constructed by Monoid or
MonoidByGenerators.

Example

gap> M := Monoid(RcwaMapping([[0,1,1],[1,1,1]]),

> RcwaMapping([[-1,3,1],[0,2,1]]));

<rcwa monoid over Z with 2 generators>

gap> Size(M);

11

gap> Display(MultiplicationTable(M));

[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],

[2, 8, 5, 11, 8, 3, 10, 5, 2, 8, 5],

[3, 10, 11, 5, 5, 5, 8, 8, 8, 2, 3],

[4, 9, 6, 8, 8, 8, 5, 5, 5, 7, 4],

[5, 8, 5, 8, 8, 8, 5, 5, 5, 8, 5],

[6, 7, 4, 8, 8, 8, 5, 5, 5, 9, 6],

[7, 5, 8, 6, 5, 4, 9, 8, 7, 5, 8],

[8, 5, 8, 5, 5, 5, 8, 8, 8, 5, 8],

[9, 5, 8, 4, 5, 6, 7, 8, 9, 5, 8],

[10, 8, 5, 3, 8, 11, 2, 5, 10, 8, 5],

[11, 2, 3, 5, 5, 5, 8, 8, 8, 10, 11]]

There are methods for the operations View, Display, Print and String which are applicable to rcwa
monoids. All rcwa monoids over a ring R are submonoids of Rcwa(R). The monoid Rcwa(R) itself is
not finitely generated, thus cannot be constructed as described above. It is handled as a special case:

58

RCWA 59

4.1.1 Rcwa (the monoid formed by all rcwa mappings of a ring)

. Rcwa(R) (function)

Returns: the monoid Rcwa(R) of all residue-class-wise affine mappings of the ring R .
Example

gap> RcwaZ := Rcwa(Integers);

Rcwa(Z)

gap> IsSubset(RcwaZ,M);

true

In our methods to construct rcwa groups, two kinds of mappings played a crucial role,
namely the restriction monomorphisms (cf. Restriction (3.1.6)) and the induction epimorphisms
(cf. Induction (3.1.7)). The restriction monomorphisms extend in a natural way to the monoids
Rcwa(R), and the induction epimorphisms have corresponding generalizations, also. Therefore the
operations Restriction and Induction can be applied to rcwa monoids as well:

Example

gap> M2 := Restriction(M,2*One(Rcwa(Integers)));

<rcwa monoid over Z with 2 generators, of size 11>

gap> Support(M2);

0(2)

gap> Action(M2,ResidueClass(1,2));

Trivial rcwa group over Z

gap> Induction(M2,2*One(Rcwa(Integers))) = M;

true

4.2 Computing with residue-class-wise affine monoids

There is a method for Size which computes the order of an rcwa monoid. Further there is a method
for in which checks whether a given rcwa mapping lies in a given rcwa monoid (membership test),
and there is a method for IsSubset which checks for a submonoid relation.

There are also methods for Support, Modulus, IsTame, PrimeSet, IsIntegral,
IsClassWiseOrderPreserving and IsSignPreserving available for rcwa monoids.

The support of an rcwa monoid is the union of the supports of its elements. The modulus of an
rcwa monoid is the lcm of the moduli of its elements in case such an lcm exists and 0 otherwise. An
rcwa monoid is called tame if its modulus is nonzero, and wild otherwise. The prime set of an rcwa
monoid is the union of the prime sets of its elements. An rcwa monoid is called integral, class-wise
order-preserving or sign-preserving if all of its elements are so.

Example

gap> f1 := RcwaMapping([[-1, 1, 1],[0,-1, 1]]);;

gap> f2 := RcwaMapping([[1,-1, 1],[-1,-2, 1],[-1, 2, 1]]);;

gap> f3 := RcwaMapping([[1, 0, 1],[-1, 0, 1]]);;

gap> N := Monoid(f1,f2,f3);;

gap> Size(N);

366

RCWA 60

gap> List([Monoid(f1,f2),Monoid(f1,f3),Monoid(f2,f3)],Size);

[96, 6, 66]

gap> f1*f2*f3 in N;

true

gap> IsSubset(N,M);

false

gap> IsSubset(N,Monoid(f1*f2,f3*f2));

true

gap> Support(N);

Integers

gap> Modulus(N);

6

gap> IsTame(N) and IsIntegral(N);

true

gap> IsClassWiseOrderPreserving(N) or IsSignPreserving(N);

false

gap> Collected(List(AsList(N),Image)); # The images of the elements of N.

[[Integers, 2], [1(2), 2], [Z \ 1(3), 32], [0(6), 44],

[0(6) U 1(6), 4], [Z \ 4(6) U 5(6), 32], [0(6) U 2(6), 4],

[0(6) U 5(6), 4], [1(6), 44], [1(6) U [-1], 2],

[1(6) U 3(6), 4], [1(6) U 5(6), 40], [2(6), 44],

[2(6) U 3(6), 4], [3(6), 44], [3(6) U 5(6), 4], [5(6), 44],

[5(6) U [1], 2], [[-5], 1], [[-4], 1], [[-3], 1],

[[-1], 1], [[0], 1], [[1], 1], [[2], 1], [[3], 1],

[[5], 1], [[6], 1]]

Finite forward orbits under the action of an rcwa monoid can be found by the operation ShortOrbits:

4.2.1 ShortOrbits (for rcwa monoid, set of points and bound on length)

. ShortOrbits(M, S, maxlng) (method)

Returns: a list of finite forward orbits of the rcwa monoid M of length at most maxlng which
start at points in the set S .

Example

gap> ShortOrbits(M,[-5..5],20);

[[-5, -4, 1, 2, 7, 8], [-3, -2, 1, 2, 5, 6], [-1, 0, 1, 2, 3, 4]]

gap> Print(Action(M,last[1]),"\n");

Monoid([Transformation([2, 3, 4, 3, 6, 3]),

Transformation([4, 5, 4, 3, 4, 1])])

gap> orbs := ShortOrbits(N,[0..10],100);

[[-5, -4, -3, -1, 0, 1, 2, 3, 5, 6],

[-11, -10, -9, -7, -6, -5, -4, -3, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

11, 12],

[-17, -16, -15, -13, -12, -11, -10, -9, -7, -6, -5, -4, -3, -1, 0, 1,

2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18]]

gap> quots := List(orbs,orb->Action(N,orb));;

gap> List(quots,Size);

[268, 332, 366]

RCWA 61

Balls of given radius around an element of an rcwa monoid can be computed by the operation
Ball. This operation can also be used for computing forward orbits or subsets of such under the
action of an rcwa monoid:

4.2.2 Ball (for monoid, element and radius or monoid, point, radius and action)

. Ball(M, f, r) (method)

. Ball(M, p, r, action) (method)

Returns: the ball of radius r around the element f in the monoid M , respectively the ball of
radius r around the point p under the action action of the monoid M .

All balls are understood with respect to GeneratorsOfMonoid(M). As membership tests can
be expensive, the first-mentioned method does not check whether f is indeed an element of M . The
methods require that point- / element comparisons are cheap. They are not only applicable to rcwa
monoids. If the option Spheres is set, the ball is split up and returned as a list of spheres.

Example

gap> List([0..12],k->Length(Ball(N,One(N),k)));

[1, 4, 11, 26, 53, 99, 163, 228, 285, 329, 354, 364, 366]

gap> Ball(N,[0..3],2,OnTuples);

[[-3, 3, 3, 3], [-1, -3, 0, 2], [-1, -1, -1, -1],

[-1, -1, 1, -1], [-1, 1, 1, 1], [-1, 3, 0, -4], [0, -1, 2, -3],

[0, 1, 2, 3], [1, -1, -1, -1], [1, 3, 0, 2], [3, -4, -1, 0]]

gap> l := 2*IdentityRcwaMappingOfZ; r := l+1;

Rcwa mapping of Z: n -> 2n

Rcwa mapping of Z: n -> 2n + 1

gap> Ball(Monoid(l,r),1,4,OnPoints:Spheres);

[[1], [2, 3], [4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]]

Chapter 5

Residue-Class-Wise Affine Mappings,
Groups and Monoids over Z2

This chapter describes how to compute with residue-class-wise affine mappings of Z2 and with groups
and monoids formed by them.

The rings on which we have defined residue-class-wise affine mappings so far have all been princi-
pal ideal domains, and it has been crucial that all nontrivial principal ideals had finite index. However,
the rings Zd , d > 1 are not principal ideal domains. Furthermore, their principal ideals have infinite
index. Therefore as moduli of residue-class-wise affine mappings we can only use lattices of full rank,
for these are precisely the ideals of Zd of finite index. However, on the other hand we can also be more
permissive and look at Zd not as a ring, but rather as a free Z-module. The consequence of this is that
then an affine mapping of Zd is not just given by v 7→ (av+b)/c for some a,b,c ∈ Zd , but rather by
v 7→ (vA+b)/c, where A ∈ Zd×d . Also for technical reasons concerning the implementation in GAP,
looking at Zd as a free Z-module is preferable – in GAP, Integers^d is not a ring, and multiplying
lists of integers means forming their scalar product.

5.1 The definition of residue-class-wise affine mappings of Zd

Let d ∈N. We call a mapping f :Zd→Zd residue-class-wise affine if there is a lattice L=ZdM where
M ∈ Zd×d is a matrix of full rank, such that the restrictions of f to the residue classes r+L ∈ Zd/L
are all affine. This means that for any residue class r + L ∈ Zd/L, there is a matrix Ar+L ∈ Zd×d ,
a vector br+L ∈ Zd and a positive integer cr+L such that the restriction of f to r + L is given by
f |r+L : r+L → Zd , v 7→ (v ·Ar+L + br+L)/cr+L. For reasons of uniqueness, we assume that L is
chosen maximal with respect to inclusion, and that no prime factor of cr+L divides all coefficients of
Ar+L and br+L.

We call the lattice L the modulus of f , written Mod(f). Further we define the prime set of f as the
set of all primes which divide the determinant of at least one of the coefficients Ar+L or which divide
the determinant of M, and we call the mapping f class-wise translating if all coefficients Ar+L are
identity matrices and all coefficients cr+L are equal to 1.

For the sake of simplicity, we identify a lattice with the Hermite normal form of the matrix by
whose rows it is spanned.

62

RCWA 63

5.2 Entering residue-class-wise affine mappings of Z2

Residue-class-wise affine mappings of Z2 can be entered using the general constructor RcwaMapping
(2.2.5) or the more specialized functions ClassTransposition (2.2.3), ClassRotation (2.2.4) and
ClassShift (2.2.1). The arguments differ only slightly.

5.2.1 RcwaMapping (the general constructor; methods for Z2)

. RcwaMapping(R, L, coeffs) (method)

. RcwaMapping(P1, P2) (method)

. RcwaMapping(cycles) (method)

. RcwaMapping(f, g) (method)

Returns: an rcwa mapping of Z2.
The above methods return

(a) the rcwa mapping of R = Integers^2 with modulus L and coefficients coeffs ,

(b) an rcwa permutation which induces a bijection between the partitions P1 and P2 of Z2 into
residue classes and which is affine on the elements of P1 ,

(c) an rcwa permutation with “residue class cycles” given by a list cycles of lists of pairwise
disjoint residue classes of Z2 each of which it permutes cyclically, and

(d) the rcwa mapping of Z2 whose projections to the coordinates are given by f and g ,

respectively.
The modulus of an rcwa mapping of Z2 is a lattice of full rank. It is represented by a matrix L in

Hermite normal form, whose rows are the spanning vectors.
A coefficient list for an rcwa mapping of Z2 with modulus L consists of |det(L)| coefficient triples

[Ar+Z2L , br+Z2L , cr+Z2L]. The entries Ar+Z2L are 2× 2 integer matrices, the br+Z2L are elements
of Z2, i.e. lists of two integers, and the cr+Z2L are integers. The ordering of the coefficient triples
is determined by the ordering of the representatives of the residue classes r+Z2L in the sorted list
returned by AllResidues(Integers^2,L).

The methods for the operation RcwaMapping perform a number of argument checks, which can
be skipped by using RcwaMappingNC instead.

Last but not least, regarding Method (d) it should be mentioned that only very special rcwa map-
pings of Z2 have projections to coordinates.

Example

gap> R := Integers^2;;

gap> twice := RcwaMapping(R,[[1,0],[0,1]],

> [[[[2,0],[0,2]],[0,0],1]]); # method (a)

Rcwa mapping of Z^2: (m,n) -> (2m,2n)

gap> [4,5]^twice;

[8, 10]

gap> twice1 := RcwaMapping(R,[[1,0],[0,1]],

> [[[[2,0],[0,1]],[0,0],1]]); # method (a)

Rcwa mapping of Z^2: (m,n) -> (2m,n)

gap> [4,5]^twice1;

[8, 5]

gap> Image(twice1);

RCWA 64

(0,0)+(2,0)Z+(0,1)Z

gap> hyperbolic := RcwaMapping(R,[[1,0],[0,2]],

> [[[[4,0],[0,1]],[0, 0],2],

> [[[4,0],[0,1]],[2,-1],2]]); # method (a)

<rcwa mapping of Z^2 with modulus (1,0)Z+(0,2)Z>

gap> IsBijective(hyperbolic);

true

gap> Display(hyperbolic);

Rcwa permutation of Z^2 with modulus (1,0)Z+(0,2)Z

/

| (2m,n/2) if (m,n) in (0,0)+(1,0)Z+(0,2)Z

(m,n) |-> < (2m+1,(n-1)/2) if (m,n) in (0,1)+(1,0)Z+(0,2)Z

|

\

gap> Trajectory(hyperbolic,[0,10000],20);

[[0, 10000], [0, 5000], [0, 2500], [0, 1250], [0, 625],

[1, 312], [2, 156], [4, 78], [8, 39], [17, 19], [35, 9],

[71, 4], [142, 2], [284, 1], [569, 0], [1138, 0],

[2276, 0], [4552, 0], [9104, 0], [18208, 0]]

gap> P1 := AllResidueClassesModulo(R,[[2,1],[0,2]]);

[(0,0)+(2,1)Z+(0,2)Z, (0,1)+(2,1)Z+(0,2)Z, (1,0)+(2,1)Z+(0,2)Z,

(1,1)+(2,1)Z+(0,2)Z]

gap> P2 := AllResidueClassesModulo(R,[[1,0],[0,4]]);

[(0,0)+(1,0)Z+(0,4)Z, (0,1)+(1,0)Z+(0,4)Z, (0,2)+(1,0)Z+(0,4)Z,

(0,3)+(1,0)Z+(0,4)Z]

gap> g := RcwaMapping(P1,P2); # method (b)

<rcwa permutation of Z^2 with modulus (2,1)Z+(0,2)Z>

gap> P1^g = P2;

true

gap> Display(g:AsTable);

Rcwa permutation of Z^2 with modulus (2,1)Z+(0,2)Z

[m,n] mod (2,1)Z+(0,2)Z | Image of [m,n]

-----------------------------+---

[0,0] | [m/2,-m+2n]

[0,1] | [m/2,-m+2n-1]

[1,0] | [(m-1)/2,-m+2n+3]

[1,1] | [(m-1)/2,-m+2n+2]

gap> classes := List([[[0,0],[[2,1],[0,2]]],[[1,0],[[2,1],[0,4]]],

> [[1,1],[[4,2],[0,4]]]],ResidueClass);

[(0,0)+(2,1)Z+(0,2)Z, (1,0)+(2,1)Z+(0,4)Z, (1,1)+(4,2)Z+(0,4)Z]

gap> g := RcwaMapping([classes]); # method (c)

<rcwa permutation of Z^2 with modulus (4,2)Z+(0,4)Z, of order 3>

gap> Permutation(g,classes);

(1,2,3)

gap> Support(g);

(0,0)+(2,1)Z+(0,2)Z U (1,0)+(2,1)Z+(0,4)Z U (1,1)+(4,2)Z+(0,4)Z

gap> Display(g);

RCWA 65

Rcwa permutation of Z^2 with modulus (4,2)Z+(0,4)Z, of order 3

/

| (m+1,(-m+4n)/2) if (m,n) in (0,0)+(2,1)Z+(0,2)Z

| (2m-1,(m+2n+1)/2) if (m,n) in (1,0)+(2,1)Z+(0,4)Z

(m,n) |-> < ((m-1)/2,(n-1)/2) if (m,n) in (1,1)+(4,2)Z+(0,4)Z

| (m,n) otherwise

|

\

gap> g := RcwaMapping(ClassTransposition(0,2,1,2),

> ClassReflection(0,2)); # method (d)

<rcwa mapping of Z^2 with modulus (2,0)Z+(0,2)Z>

gap> Display(g);

Rcwa mapping of Z^2 with modulus (2,0)Z+(0,2)Z

/

| (m+1,-n) if (m,n) in (0,0)+(2,0)Z+(0,2)Z

| (m+1,n) if (m,n) in (0,1)+(2,0)Z+(0,2)Z

(m,n) |-> < (m-1,-n) if (m,n) in (1,0)+(2,0)Z+(0,2)Z

| (m-1,n) if (m,n) in (1,1)+(2,0)Z+(0,2)Z

|

\

gap> g^2;

IdentityMapping((Integers^2))

gap> List(ProjectionsToCoordinates(g),Factorization);

[[(0(2), 1(2))], [ClassReflection(0(2))]]

5.2.2 ClassTransposition (for Z2)

. ClassTransposition(r1, L1, r2, L2) (function)

. ClassTransposition(cl1, cl2) (function)

Returns: the class transposition τr1+Z2L1,r2+Z2L2
.

Let d ∈ N, and let L1,L2 ∈ Zd×d be matrices of full rank which are in Hermite normal form.
Further let r1 +ZdL1 and r2 +ZdL2 be disjoint residue classes, and assume that the representatives
r1 and r2 are reduced modulo ZdL1 and ZdL2, respectively. Then we define the class transposition
τr1+ZdL1,r2+ZdL2

∈ Sym(Zd) as the involution which interchanges r1 + kL1 and r2 + kL2 for all k ∈ Zd .
The class transposition τr1+ZdL1,r2+ZdL2

interchanges the residue classes r1 +ZdL1 and r2 +ZdL2,
and fixes the complement of their union pointwise. The set of all class transpositions of Zd generates
the simple group CT(Zd) (cf. [Koh13]).

In the four-argument form, the arguments r1 , L1 , r2 and L2 stand for r1, L1, r2 and L2, respec-
tively. In the two-argument form, the arguments cl1 and cl2 stand for the residue classes r1 +Z2L1
and r2 +Z2L2, respectively. Enclosing the argument list in list brackets is permitted. The residue
classes r1 +Z2L1 and r2 +Z2L2 are stored as an attribute TransposedClasses.

There is also a method for SplittedClassTransposition available for class transpositions of
Z2. This method takes as first argument the class transposition, and as second argument a list of two

RCWA 66

integers. These integers are the numbers of parts into which the class transposition is to be sliced in
each dimension. Note that the product of the returned class transpositions is not always equal to the
class transposition passed as first argument. However this equality holds if the first entry of the second
argument is 1.

Example

gap> ct := ClassTransposition([0,0],[[2,1],[0,2]],[1,0],[[2,1],[0,4]]);

((0,0)+(2,1)Z+(0,2)Z, (1,0)+(2,1)Z+(0,4)Z)

gap> Display(ct);

Rcwa permutation of Z^2 with modulus (2,1)Z+(0,4)Z, of order 2

/

| (m+1,(-m+4n)/2) if (m,n) in (0,0)+(2,1)Z+(0,2)Z

(m,n) |-> < (m-1,(m+2n-1)/4) if (m,n) in (1,0)+(2,1)Z+(0,4)Z

| (m,n) otherwise

\

gap> TransposedClasses(ct);

[(0,0)+(2,1)Z+(0,2)Z, (1,0)+(2,1)Z+(0,4)Z]

gap> ct = ClassTransposition(last);

true

gap> SplittedClassTransposition(ct,[1,2]);

[((0,0)+(2,1)Z+(0,4)Z, (1,0)+(2,1)Z+(0,8)Z),

((0,2)+(2,1)Z+(0,4)Z, (1,4)+(2,1)Z+(0,8)Z)]

gap> Product(last) = ct;

true

gap> SplittedClassTransposition(ct,[2,1]);

[((0,0)+(4,0)Z+(0,2)Z, (1,0)+(4,2)Z+(0,4)Z),

((2,1)+(4,0)Z+(0,2)Z, (3,1)+(4,2)Z+(0,4)Z)]

gap> Product(last) = ct;

false

5.2.3 ClassRotation (for Z2)

. ClassRotation(r, L, u) (function)

. ClassRotation(cl, u) (function)

Returns: the class rotation ρr(m),u.
Let d ∈N. Given a residue class r+ZdL and a matrix u ∈GL(d,Z), the class rotation ρr+ZdL,u is

the rcwa mapping which maps v∈ r+ZdL to vu+r(1−u) and which fixes Zd \r+ZdL pointwise. In
the two-argument form, the argument cl stands for the residue class r+ZdL. Enclosing the argument
list in list brackets is permitted. The argument u is stored as an attribute RotationFactor.

Example

gap> interchange := ClassRotation([0,0],[[1,0],[0,1]],[[0,1],[1,0]]);

ClassRotation(Z^2, [[0, 1], [1, 0]])

gap> Display(interchange);

Rcwa permutation of Z^2: (m,n) -> (n,m)

gap> classes := AllResidueClassesModulo(Integers^2,[[2,1],[0,3]]);

[(0,0)+(2,1)Z+(0,3)Z, (0,1)+(2,1)Z+(0,3)Z, (0,2)+(2,1)Z+(0,3)Z,

RCWA 67

(1,0)+(2,1)Z+(0,3)Z, (1,1)+(2,1)Z+(0,3)Z, (1,2)+(2,1)Z+(0,3)Z]

gap> transvection := ClassRotation(classes[5],[[1,1],[0,1]]);

ClassRotation((1,1)+(2,1)Z+(0,3)Z,[[1,1],[0,1]])

gap> Display(transvection);

Tame rcwa permutation of Z^2 with modulus (2,1)Z+(0,3)Z, of order infinity

/

| (m,(3m+2n-3)/2) if (m,n) in (1,1)+(2,1)Z+(0,3)Z

(m,n) |-> < (m,n) otherwise

|

\

5.2.4 ClassShift (for Z2)

. ClassShift(r, L, k) (function)

. ClassShift(cl, k) (function)

Returns: the class shift νr+ZdL,k.
Let d ∈ N. Given a residue class r+ZdL and an integer k ∈ {1, . . . ,d}, the class shift νr+ZdL,k is

the rcwa mapping which maps v ∈ r+ZdL to v+Lk and which fixes Zd \ r+ZdL pointwise. Here Lk
denotes the kth row of L.

In the two-argument form, the argument cl stands for the residue class r+ZdL. Enclosing the
argument list in list brackets is permitted.

Example

gap> shift1 := ClassShift([0,0],[[1,0],[0,1]],1);

ClassShift(Z^2, 1)

gap> Display(shift1);

Tame rcwa permutation of Z^2: (m,n) -> (m+1,n)

gap> s := ClassShift(ResidueClass([1,1],[[2,1],[0,2]]),2);

ClassShift((1,1)+(2,1)Z+(0,2)Z,2)

gap> Display(s);

Tame rcwa permutation of Z^2 with modulus (2,1)Z+(0,2)Z, of order infinity

/

| (m,n+2) if (m,n) in (1,1)+(2,1)Z+(0,2)Z

(m,n) |-> < (m,n) if (m,n) in (0,0)+(2,0)Z+(0,1)Z U

| (1,0)+(2,1)Z+(0,2)Z

\

As for other rings, class transpositions, class rotations and class shifts of Z2 have the distinguishing
properties IsClassTransposition, IsClassRotation and IsClassShift.

5.3 Methods for residue-class-wise affine mappings of Z2

There are methods available for rcwa mappings of Z2 for the following general operations:

RCWA 68

Output
View, Display, Print, String, LaTeXStringRcwaMapping, LaTeXAndXDVI.

Access to components
Modulus, Coefficients.

Attributes
Support / MovedPoints, Order, Multiplier, Divisor, PrimeSet, One, Zero.

Properties
IsInjective, IsSurjective, IsBijective, IsTame, IsIntegral, IsBalanced,
IsClassWiseOrderPreserving, IsOne, IsZero.

Action on Zd

^ (for points / finite sets / residue class unions), Trajectory, ShortCycles, Multpk,
ClassWiseOrderPreservingOn, ClassWiseOrderReversingOn, ClassWiseConstantOn.

Arithmetical operations
=, * (multiplication / composition and multiplication by a 2×2 matrix or an integer), ^ (expo-
nentiation and conjugation), Inverse, + (addition of a constant).

The above operations are documented either in the GAP Reference Manual or earlier in this manual.
The operations which are special for rcwa mappings of Z2 are described in the sequel.

5.3.1 ProjectionsToCoordinates (for an rcwa mapping of Z x Z)

. ProjectionsToCoordinates(f) (attribute)

Returns: the projections of the rcwa mapping f of Z2 to the coordinates if such projections exist,
and fail otherwise.

An rcwa mapping can be projected to the first / second coordinate if and only if the first / second
coordinate of the image of a point depends only on the first / second coordinate of the preimage. Note
that this is a very strong and restrictive condition.

Example

gap> f := RcwaMapping(ClassTransposition(0,2,1,2),ClassReflection(0,2));;

gap> Display(f);

Rcwa mapping of Z^2 with modulus (2,0)Z+(0,2)Z

/

| (m+1,-n) if (m,n) in (0,0)+(2,0)Z+(0,2)Z

| (m+1,n) if (m,n) in (0,1)+(2,0)Z+(0,2)Z

(m,n) |-> < (m-1,-n) if (m,n) in (1,0)+(2,0)Z+(0,2)Z

| (m-1,n) if (m,n) in (1,1)+(2,0)Z+(0,2)Z

|

\

gap> List(ProjectionsToCoordinates(f),Factorization);

[[(0(2), 1(2))], [ClassReflection(0(2))]]

RCWA 69

5.4 Methods for residue-class-wise affine groups and -monoids over Z2

Residue-class-wise affine groups over Z2 can be entered by Group, GroupByGenerators and
GroupWithGenerators, like any groups in GAP. Likewise, residue-class-wise affine monoids over
Z2 can be entered by Monoid and MonoidByGenerators. The groups RCWA(Z2) and CT(Z2) are
entered as RCWA(Integers^2) and CT(Integers^2), respectively. The monoid Rcwa(Z2) is entered
as Rcwa(Integers^2).

There are methods provided for the operations Size, IsIntegral, IsClassWiseTranslating,
IsTame, Modulus, Multiplier and Divisor.

There are methods for IsomorphismRcwaGroup (3.1.1) which embed the groups SL(2,Z) and
GL(2,Z) into RCWA(Z2) in such a way that the support of the image is a specified residue class:

5.4.1 IsomorphismRcwaGroup (Embeddings of SL(2,Z) and GL(2,Z))

. IsomorphismRcwaGroup(sl2z, cl) (attribute)

. IsomorphismRcwaGroup(gl2z, cl) (attribute)

Returns: a monomorphism from sl2z respectively gl2z to RCWA(Z2), such that the support
of the image is the residue class cl and the generators are affine on cl .

Example

gap> sl := SL(2,Integers);

SL(2,Integers)

gap> phi := IsomorphismRcwaGroup(sl,ResidueClass([1,0],[[2,2],[0,3]]));

[[[0, 1], [-1, 0]], [[1, 1], [0, 1]]] ->

[ClassRotation((1,0)+(2,2)Z+(0,3)Z,[[0,1],[-1,0]]),

ClassRotation((1,0)+(2,2)Z+(0,3)Z,[[1,1],[0,1]])]

gap> Support(Image(phi));

(1,0)+(2,2)Z+(0,3)Z

gap> gl := GL(2,Integers);

GL(2,Integers)

gap> phi := IsomorphismRcwaGroup(gl,ResidueClass([1,0],[[2,2],[0,3]]));

[[[0, 1], [1, 0]], [[-1, 0], [0, 1]],

[[1, 1], [0, 1]]] ->

[ClassRotation((1,0)+(2,2)Z+(0,3)Z,[[0,1],[1,0]]),

ClassRotation((1,0)+(2,2)Z+(0,3)Z,[[-1,0],[0,1]]),

ClassRotation((1,0)+(2,2)Z+(0,3)Z,[[1,1],[0,1]])]

gap> [[-47,-37],[61,48]]^phi;

ClassRotation((1,0)+(2,2)Z+(0,3)Z,[[-47,-37],[61,48]])

gap> Display(last:AsTable);

Rcwa permutation of Z^2 with modulus (2,2)Z+(0,3)Z, of order 6

[m,n] mod (2,2)Z+(0,3)Z | Image of [m,n]

-----------------------------+---

[0,0] [0,1] [0,2] [1,1] |

[1,2] | [m,n]

[1,0] | [(-263m+122n+266)/3,(-1147m+532n+1147)/6]

RCWA 70

The function DrawOrbitPicture (3.3.3) can also be used to depict orbits under the action of rcwa
groups over Z2. Further there is a function which depicts residue class unions of Z2 and partitions
of Z2 into such:

5.4.2 DrawGrid

. DrawGrid(U, yrange, xrange, filename) (function)

. DrawGrid(P, yrange, xrange, filename) (function)

Returns: nothing.
This function depicts the residue class union U of Z2 or the partition P of Z2 into residue class

unions, respectively. The arguments yrange and xrange are the coordinate ranges of the rectangular
snippet to be drawn, and the argument filename is the name, i.e. the full path name, of the output
file. If the first argument is a residue class union, the output picture is black-and-white, where black
pixels represent members of U and white pixels represent non-members. If the first argument is a
partition of Z2 into residue class unions, the produced picture is colored, and different colors are used
to denote membership in different parts.

Chapter 6

Databases of Residue-Class-Wise Affine
Groups and -Mappings

The RCWA package contains a number of databases of rcwa groups and rcwa mappings. They can
be loaded into a GAP session by the functions described in this chapter.

6.1 The collection of examples

6.1.1 LoadRCWAExamples

. LoadRCWAExamples() (function)

Returns: a record containing a collection of examples of rcwa groups and -mappings, as stored
in the file pkg/rcwa/examples/examples.g.

The components of the record returned by this function are records which contain the individual
groups and mappings. A detailed description of some of the examples can be found in Chapter 7.

Example

gap> examples := LoadRCWAExamples();;

gap> Set(RecNames(examples));

["AbelianGroupOverPolynomialRing", "Basics", "CT3Z", "CTPZ",

"CheckingForSolvability", "ClassSwitches",

"ClassTranspositionProducts", "ClassTranspositionsAsCommutators",

"CollatzFactorizationOld", "CollatzMapping", "CollatzlikePerms",

"CoprimeMultDiv", "F2_PSL2Z", "Farkas", "FiniteQuotients",

"FiniteVsDenseCycles", "GF2xFiniteCycles", "GrigorchukQuotients",

"Hexagon", "HicksMullenYucasZavislak", "HigmanThompson",

"LongCyclesOfPrimeLength", "MatthewsLeigh",

"MaybeInfinitelyPresentedGroup", "ModuliOfPowers",

"OddNumberOfGens_FiniteOrder", "Semilocals",

"SlowlyContractingMappings", "Syl3_S9", "SymmetrizingCollatzTree",

"TameGroupByCommsOfWildPerms", "Venturini", "ZxZ"]

gap> AssignGlobals(examples.ZxZ);

The following global variables have been assigned:

["R", "SigmaT", "SigmaTm", "Sigma_T", "T2", "a", "b", "commT_Tm",

"hyperbolic", "reflection", "reflection1", "reflection2", "switch",

"transvection", "twice", "twice1", "twice2"]

gap> a*b = Sigma_T;

71

RCWA 72

true

gap> Display(Sigma_T);

Rcwa mapping of Z^2 with modulus (1,0)Z+(0,6)Z

/

| (2m+1,(3n+1)/2) if (m,n) in (0,1)+(1,0)Z+(0,2)Z

| (m,n/2) if (m,n) in (0,0)+(1,0)Z+(0,6)Z U

(m,n) |-> < (0,2)+(1,0)Z+(0,6)Z

| (2m,n/2) if (m,n) in (0,4)+(1,0)Z+(0,6)Z

|

\

6.2 Databases of rcwa groups

6.2.1 LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions (small database)

. LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions() (function)

Returns: a record containing a database of all groups generated by 3 class transpositions which
interchange residue classes with moduli ≤ 6.

The record presently has the components grps (the list of the 52394 groups – 21948 finite
and 30446 infinite ones), sizes (the list of group orders), mods (the list of moduli of the groups),
trsstatus (lists what is known about whether the groups are transitive on the nonnegative inte-
gers in their support), cts (the list of all 69 class transpositions which interchange residue classes
with moduli ≤ 6), and possibly further which are not described here. For all integers i from 1 to
52394 it holds that Size(grps[i]) = sizes[i] and that Modulus(grps[i]) = mods[i]. Simi-
larly, trsstatus[i] describes what is known about whether the group grps[i] acts transitively on
the set of nonnegative integers in its support – for many of the groups this is a description of how the
computation failed.

The group grps[44132] might be called the “Collatz group” or the “3n+1 - group” – its action on
the set of positive integers which are not divisible by 6 is transitive if and only if the 3n+1 conjecture
is true.

Note that the contents of this database are not “set in stone”, and are likely to change in coming
releases. Also note that the database presently contains an entry for every unordered triple of distinct
class transpositions in cts, which means that it contains multiple copies of equal groups. For the
future it is planned to include information on which groups are equal and which are isomorphic, but
in particular for the infinite groups this task seems to be algorithmically hard.

Example

gap> data := LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions();;

gap> ViewString(data.grps[44132]); # the "3n+1 group"

"<(2(3),4(6)),(1(3),2(6)),(1(2),4(6))>"

gap> data.trsstatus[44132]; # deciding this would solve the 3n+1 problem

"exceeded memory bound"

gap> Length(Set(data.sizes));

1066

gap> Maximum(Filtered(data.sizes,IsInt));

7165033589793852697531456980706732548435609645091822296777976465116824959\

RCWA 73

2135499174617837911754921014138184155204934961004073853323458315539461543\

448051526081840991384616147353600\

000000

gap> Positions(data.sizes,last);

[33814, 36548]

gap> List(data.grps{last},ViewString);

["<(1(5),4(5)),(0(3),1(6)),(3(4),0(6))>",

"<(0(5),3(5)),(2(3),4(6)),(0(4),5(6))>"]

gap> Collected(data.mods);

[[0, 30446], [3, 1], [4, 37], [5, 120], [6, 1450], [8, 18],

[10, 45], [12, 3143], [15, 165], [18, 484], [20, 528],

[24, 1339], [30, 2751], [36, 2064], [40, 26], [48, 515],

[60, 2322], [72, 2054], [80, 44], [90, 108], [96, 108],

[108, 114], [120, 782], [144, 310], [160, 26], [180, 206],

[192, 6], [216, 72], [240, 304], [270, 228], [288, 14],

[360, 84], [432, 36], [480, 218], [540, 18], [720, 120],

[810, 112], [864, 8], [960, 94], [1080, 488], [1620, 44],

[1920, 38], [2160, 506], [3240, 34], [3840, 12],

[4320, 218], [4860, 16], [6480, 282], [7680, 10],

[8640, 16], [12960, 120], [14580, 2], [25920, 34],

[30720, 2], [38880, 12], [51840, 8], [77760, 32]]

gap> Collected(data.trsstatus);

[["> 1 orbit (mod m)", 593],

["Mod(U DecreasingOn) exceeded <maxmod>", 23],

["U DecreasingOn stable and exceeded memory bound", 11],

["U DecreasingOn stable for <maxeq> steps", 5757],

["exceeded memory bound", 497], ["finite", 21948],

["intransitive, but finitely many orbits", 8],

["seemingly only finite orbits (long)", 1227],

["seemingly only finite orbits (medium)", 2501],

["seemingly only finite orbits (short)", 4816],

["seemingly only finite orbits (very long)", 230],

["seemingly only finite orbits (very long, very unclear)", 76],

["seemingly only finite orbits (very short)", 208],

["there are infinite orbits which have exponential sphere size growth"

, 2934],

["there are infinite orbits which have linear sphere size growth",

10881],

["there are infinite orbits which have unclear sphere size growth",

86], ["transitive", 558],

["transitive up to one finite orbit", 40]]

6.2.2 LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions (small or large
database)

. LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions(max_m) (function)

Returns: a record containing a database of all groups generated by 3 class transpositions which
interchange residue classes with moduli less than or equal to max_m , where max_m is either 6 or 9.

If max_m is 6, this is equivalent to the call of the function without argument described above.
If max_m is 9, the function returns a record with components cts (a list of all class transposi-

RCWA 74

tions which interchange residue classes with moduli ≤ 9), mods (the list of moduli of the groups,
i.e. Mod(Group(cts{[i,j,k]})) = mods[i][j][k], for all triples (i, j,k) of positive integers
which satisfy 264 ≥ i > j > k), partlengths (the list of shortest respected partitions of the groups,
i.e. Length(RespectedPartition(Group(cts{[i,j,k]}))) = partlengths[i][j][k]), and
sizes (the list of orders of the groups, i.e. Size(Group(cts{[i,j,k]})) = sizes[i][j][k]).

6.2.3 LoadDatabaseOfGroupsGeneratedBy4ClassTranspositions

. LoadDatabaseOfGroupsGeneratedBy4ClassTranspositions() (function)

Returns: a record containing a database of all groups generated by 4 class transpositions which
interchange residue classes with moduli ≤ 6 for which all subgroups generated by 3 out of the 4
generators are finite.

The record presently has the components grps4_3finite (the list of all 140947 groups
in the database), sizes4 (the list of group orders), mods4 (the list of moduli of the groups),
conjugacyclasses4cts (a list of lists of positions of groups in the list grps4_3finite which
are already known to be conjugate), grps4_3finite_reps (tentative conjugacy class representa-
tives from the list grps4_3finite – tentative in the sense that likely some of the groups in the
list are still conjugate), cts (the list of all 69 class transpositions which interchange residue classes
with moduli ≤ 6), grps4_3finitepos (the list obtained from grps4_3finite by replacing every
group generator by its position in the list cts, and possibly further which are not described here.
For all integers i from 1 to 140947 it holds that Size(grps4_3finite[i]) = sizes4[i] and that
Modulus(grps4_3finite[i]) = mods4[i]. Note that the contents of this database are not “set in
stone”, and are likely to change in coming releases. Also note that the database contains an entry for
every suitable unordered 4-tuple of distinct class transpositions in cts, which means that it contains
multiple copies of equal groups.

Example

gap> data := LoadDatabaseOfGroupsGeneratedBy4ClassTranspositions();;

gap> AssignGlobals(data);

The following global variables have been assigned:

["conjugacyclasses4cts", "cts", "grps4_3finite", "grps4_3finite_reps",

"grps4_3finitepos", "mods4", "sizes4", "sizes4pos", "sizes4set"]

gap> Length(grps4_3finite);

140947

gap> Length(sizes4);

140947

gap> Size(grps4_3finite[1]);

518400

gap> sizes4[1];

518400

gap> Maximum(Filtered(sizes4,IsInt));

<integer 420...000 (3852 digits)>

gap> Modulus(grps4_3finite[1]);

12

gap> mods4[1];

12

gap> Length(Set(sizes4));

7339

gap> Length(Set(mods4));

91

RCWA 75

gap> Set(mods4);

[0, 4, 5, 6, 8, 10, 12, 15, 18, 20, 24, 30, 36, 40, 48, 60, 72, 80, 90,

96, 108, 120, 144, 160, 180, 192, 216, 240, 270, 288, 320, 360, 384,

432, 480, 540, 576, 720, 810, 864, 960, 1080, 1440, 1620, 1728, 1920,

2160, 2430, 2592, 2880, 3240, 3840, 4320, 4860, 5760, 6480, 7680,

8640, 9720, 10368, 12960, 14580, 15360, 17280, 19440, 25920, 30720,

34560, 38880, 43740, 51840, 61440, 69120, 77760, 103680, 116640,

122880, 155520, 207360, 233280, 311040, 349920, 414720, 466560,

622080, 933120, 1244160, 1658880, 1866240, 5598720, 33592320]

gap> conjugacyclasses4cts{[1..4]};

[[1, 23, 563, 867], [2, 859], [3, 622], [4, 16, 868, 873]]

gap> grps4_3finite[1] = grps4_3finite[23];

true

gap> grps4_3finite[4] = grps4_3finite[16];

false

gap> Size(grps4_3finite[4]);

44696597299200000

gap> Size(grps4_3finite[16]);

44696597299200000

gap> RepresentativeAction(RCWA(Integers),grps4_3finite[4],

> grps4_3finite[16],OnPoints);

(0(30), 6(30), 12(30)) (1(30), 7(30), 13(30)) (2(30), 8(30), 14(30) \

) (3(30), 9(30), 15(30)) (4(30), 10(30), 16(30)) (5(30), 11(30), 17(\

30))

6.3 Databases of rcwa mappings

6.3.1 LoadDatabaseOfProductsOf2ClassTranspositions

. LoadDatabaseOfProductsOf2ClassTranspositions() (function)

Returns: a record containing a database of all products of 2 class transpositions which inter-
change residue classes with moduli ≤ 6.

There are 69 class transpositions which interchange residue classes with moduli ≤ 6, thus there
is a total of (69 · 68)/2 = 2346 unordered pairs of distinct such class transpositions. Looking at
intersection- and subset relations between the 4 involved residue classes, we can distinguish 17 dif-
ferent “intersection types” (or 18, together with the trivial case of equal class transpositions). The
intersection type does not fully determine the cycle structure of the product. – In total, we can distin-
guish 88 different cycle types of products of 2 class transpositions which interchange residue classes
with moduli ≤ 6.

The components of the returned record are a list CTPairs of all 2346 pairs of dis-
tinct class transpositions which interchange residue classes with moduli ≤ 6, functions
CTPairsIntersectionTypes, CTPairIntersectionType and CTPairProductType as well as
data lists CTPairsProductClassification and CTPairsProductType. – For a precise descrip-
tion see the file pkg/rcwa/data/ctprodclass.g.

Example

gap> data := LoadDatabaseOfProductsOf2ClassTranspositions();;

gap> Set(RecNames(data));

["CTPairIntersectionType", "CTPairProductType", "CTPairs",

RCWA 76

"CTPairsIntersectionTypes", "CTPairsProductClassification",

"CTPairsProductType", "CTProds12", "CTProds32", "OrdersMatrix"]

gap> Length(data.CTPairs);

2346

gap> Collected(List(data.CTPairsProductType,l->l[2])); # order statistics

[[2, 165], [3, 255], [4, 173], [6, 693], [10, 2],

[12, 345], [15, 4], [20, 10], [30, 120], [60, 44],

[infinity, 535]]

6.3.2 LoadDatabaseOfNonbalancedProductsOfClassTranspositions

. LoadDatabaseOfNonbalancedProductsOfClassTranspositions() (function)

Returns: a record containing a database of products of class transpositions which are not bal-
anced.

This database contains a list of the 24 pairs of class transpositions which interchange residue
classes with moduli ≤ 6 and whose product is not balanced, as well as a list of all 36 essentially
distinct triples of such class transpositions whose product has coprime multiplier and divisor.

Example

gap> data := LoadDatabaseOfNonbalancedProductsOfClassTranspositions();;

gap> Set(RecNames(data));

["PairsOfCTsWhoseProductIsNotBalanced",

"TriplesOfCTsWhoseProductHasCoprimeMultiplierAndDivisor"]

gap> List(data.PairsOfCTsWhoseProductIsNotBalanced,

> p->List(p,TransposedClasses));

[[[1(2), 2(4)], [2(4), 3(6)]], [[1(2), 2(4)], [2(4), 5(6)]],

[[1(2), 2(4)], [2(4), 1(6)]], [[1(2), 0(4)], [0(4), 1(6)]],

[[1(2), 0(4)], [0(4), 3(6)]], [[1(2), 0(4)], [0(4), 5(6)]],

[[0(2), 1(4)], [1(4), 2(6)]], [[0(2), 1(4)], [1(4), 4(6)]],

[[0(2), 1(4)], [1(4), 0(6)]], [[0(2), 3(4)], [3(4), 4(6)]],

[[0(2), 3(4)], [3(4), 2(6)]], [[0(2), 3(4)], [3(4), 0(6)]],

[[1(2), 2(6)], [3(4), 2(6)]], [[1(2), 2(6)], [1(4), 2(6)]],

[[1(2), 4(6)], [3(4), 4(6)]], [[1(2), 4(6)], [1(4), 4(6)]],

[[1(2), 0(6)], [1(4), 0(6)]], [[1(2), 0(6)], [3(4), 0(6)]],

[[0(2), 1(6)], [2(4), 1(6)]], [[0(2), 1(6)], [0(4), 1(6)]],

[[0(2), 3(6)], [2(4), 3(6)]], [[0(2), 3(6)], [0(4), 3(6)]],

[[0(2), 5(6)], [2(4), 5(6)]], [[0(2), 5(6)], [0(4), 5(6)]]]

Chapter 7

Examples

This chapter discusses a number of “nice” examples of rcwa mappings and -groups in detail. All of
them show different aspects of the package, and the order in which they appear is entirely arbitrary.
In particular they are not ordered by degree of difficulty or interest.

The rcwa mappings, rcwa groups and other objects defined in this chapter can be found in the file
pkg/rcwa/examples/examples.g. This file can be read into the current GAP session by the func-
tion LoadRCWAExamples (6.1.1) which takes no arguments and returns a record containing all exam-
ples. The global variable assignments made in a section of this chapter can be made by applying the
function AssignGlobals to the respective component of the record returned by LoadRCWAExamples.
The component names are given at the end of the corresponding sections.

The discussions of the examples are typically far from being exhaustive. It is quite likely that
in many instances by just a few little modifications or additional easy commands you can find out
interesting things yourself – have fun!

7.1 The Higman-Thompson group

The Higman-Thompson group is a finitely presented infinite simple group, cf. [Hig74].
We show that the group

Example

gap> G := Group(List([[0,2,1,4],[0,4,1,4],[1,4,2,4],[2,4,3,4]],

> ClassTransposition));

<(0(2),1(4)),(0(4),1(4)),(1(4),2(4)),(2(4),3(4))>

is isomorphic to the Higman-Thompson group. This isomorphism has been pointed out by John P.
McDermott. We take a slightly different set of generators

Example

gap> k := ClassTransposition(0,2,1,2);;

gap> l := ClassTransposition(1,2,2,4);;

gap> m := ClassTransposition(0,2,1,4);;

gap> n := ClassTransposition(1,4,2,4);;

gap> H := Group(k,l,m,n);

<(0(2),1(2)),(1(2),2(4)),(0(2),1(4)),(1(4),2(4))>

gap> G = H; # k, l, m and n generate G as well

77

RCWA 78

true

Now we verify that our four generators satisfy the relations given on page 50 in [Hig74], when we
read k as κ , l as λ , m as µ and n as ν :

Example

gap> HigmanThompsonRels :=

> [k^2, l^2, m^2, n^2, # (1) in Higman's book

> l*k*m*k*l*n*k*n*m*k*l*k*m, # (2) "

> k*n*l*k*m*n*k*l*n*m*n*l*n*m, # (3) "

> (l*k*m*k*l*n)^3, (m*k*l*k*m*n)^3, # (4) "

> (l*n*m)^2*k*(m*n*l)^2*k, # (5) "

> (l*n*m*n)^5, # (6) "

> (l*k*n*k*l*n)^3*k*n*k*(m*k*n*k*m*n)^3*k*n*k*n,# (7) "

> ((l*k*m*n)^2*(m*k*l*n)^2)^3, # (8) "

> (l*n*l*k*m*k*m*n*l*n*m*k*m*k)^4, # (9) "

> (m*n*m*k*l*k*l*n*m*n*l*k*l*k)^4, #(10) "

> (l*m*k*l*k*m*l*k*n*k)^2, #(11) "

> (m*l*k*m*k*l*m*k*n*k)^2]; #(12) "

[IdentityMapping(Integers), IdentityMapping(Integers),

IdentityMapping(Integers), IdentityMapping(Integers),

IdentityMapping(Integers), IdentityMapping(Integers),

IdentityMapping(Integers), IdentityMapping(Integers),

IdentityMapping(Integers), IdentityMapping(Integers),

IdentityMapping(Integers), IdentityMapping(Integers),

IdentityMapping(Integers), IdentityMapping(Integers),

IdentityMapping(Integers), IdentityMapping(Integers)]

We conclude that our group is an homomorphic image of the Higman-Thompson group. But since the
Higman-Thompson group is simple and our group is not trivial, this means indeed that the two groups
are isomorphic.

In fact it is straightforward to show that G is the group CT /0(Z) in Corollary 3.7 in [Koh10], which
is generated by the set of all class transpositions which interchange residue classes modulo powers
of 2. First we check that G contains all 11 class transpositions which interchange residue classes
modulo 2 or 4:

Example

gap> S := Filtered(List(ClassPairs(4),ClassTransposition),

> ct->Mod(ct) in [2,4]);

[(0(2), 1(2)), (0(2), 1(4)), (0(2), 3(4)), (0(4), 1(4)),

(0(4), 2(4)), (0(4), 3(4)), (1(2), 0(4)), (1(2), 2(4)),

(1(4), 2(4)), (1(4), 3(4)), (2(4), 3(4))]

gap> IsSubset(G,S);

true

Then we give a function which takes a class transposition τ ∈ CT /0(Z), and which returns a fac-
torization of an element γ satisfying τγ ∈ S into g1 := (0(2),1(4)) ∈ S, g2 := (0(2),3(4)) ∈ S,
g3 := (1(2),0(4)) ∈ S, g4 := (1(2),2(4)) ∈ S, h1 := (0(4),1(4)) ∈ S and h2 := (1(4),2(4)) ∈ S:

RCWA 79

GAP code

ReducingConjugator := function (tau)

local w, F, g1, g2, g3, g4, h1, h2, h, cls, cl, r;

g1 := ClassTransposition(0,2,1,4); h1 := ClassTransposition(0,4,1,4);

g2 := ClassTransposition(0,2,3,4); h2 := ClassTransposition(1,4,2,4);

g3 := ClassTransposition(1,2,0,4);

g4 := ClassTransposition(1,2,2,4);

F := FreeGroup("g1","g2","g3","g4","h1","h2");

w := One(F); if Mod(tau) <= 4 then return w; fi;

Before we can reduce the moduli of the interchanged residue classes,

we must make sure that both of them have at least modulus 4.

cls := TransposedClasses(tau);

if Mod(cls[1]) = 2 then

if Residue(cls[1]) = 0 then

if Residue(cls[2]) mod 4 = 1 then tau := tau^g2; w := w * F.2;

else tau := tau^g1; w := w * F.1; fi;

else

if Residue(cls[2]) mod 4 = 0 then tau := tau^g4; w := w * F.4;

else tau := tau^g3; w := w * F.3; fi;

fi;

fi;

while Mod(tau) > 4 do # Now we can successively reduce the moduli.

if not ForAny(AllResidueClassesModulo(2),

cl -> IsEmpty(Intersection(cl,Support(tau))))

then

cls := TransposedClasses(tau);

h := Filtered([h1,h2],

hi->Length(Filtered(cls,cl->IsSubset(Support(hi),cl)))=1);

h := h[1]; tau := tau^h;

if h = h1 then w := w * F.5; else w := w * F.6; fi;

fi;

cl := TransposedClasses(tau)[2]; # class with larger modulus

r := Residue(cl);

if r mod 4 = 1 then tau := tau^g1; w := w * F.1;

elif r mod 4 = 3 then tau := tau^g2; w := w * F.2;

elif r mod 4 = 0 then tau := tau^g3; w := w * F.3;

elif r mod 4 = 2 then tau := tau^g4; w := w * F.4; fi;

od;

return w;

end;

After assigning g1, g2, g3, g4, h1 and h2 appropriately, we obtain for example:
Example

RCWA 80

gap> ReducingConjugator(ClassTransposition(3,16,34,256));

h2*g1*h1*g1*h1*g1*h1*g1*h2*g2*h2*g4*h2*g4*h2*g3

gap> gamma := h2*g1*h1*g1*h1*g1*h1*g1*h2*g2*h2*g4*h2*g4*h2*g3;

<rcwa permutation of Z with modulus 256>

gap> ct := ClassTransposition(3,16,34,256)^gamma;;

gap> IsClassTransposition(ct);;

gap> ct;

ClassTransposition(1,4,2,4)

The Higman-Thompson group can also be embedded in a natural way into CT(GF(2)[x]):
Example

gap> x := Indeterminate(GF(2));; SetName(x,"x");

gap> R := PolynomialRing(GF(2),1);;

gap> k := ClassTransposition(0,x,1,x);;

gap> l := ClassTransposition(1,x,x,x^2);;

gap> m := ClassTransposition(0,x,1,x^2);;

gap> n := ClassTransposition(1,x^2,x,x^2);;

gap> G := Group(k,l,m,n);

<rcwa group over GF(2)[x] with 4 generators>

The correctness of this representation can likewise be verified by simply checking the defining rela-
tions given above.

Enter AssignGlobals(LoadRCWAExamples().HigmanThompson); in order to assign the global
variables defined in this section.

7.2 Factoring Collatz’ permutation of the integers

In 1932, Lothar Collatz mentioned in his notebook the following permutation of the integers:
Example

gap> Collatz := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);;

gap> Display(Collatz);

Rcwa mapping of Z with modulus 3

/

| 2n/3 if n in 0(3)

n |-> < (4n-1)/3 if n in 1(3)

| (4n+1)/3 if n in 2(3)

\

gap> ShortCycles(Collatz,[-50..50],50); # There are some finite cycles:

[[0], [-1], [1], [2, 3], [-2, -3], [4, 5, 7, 9, 6],

[-4, -5, -7, -9, -6],

[44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66],

[-44, -59, -79, -105, -70, -93, -62, -83, -111, -74, -99, -66]]

RCWA 81

The cycle structure of Collatz’ permutation has not been completely determined yet. In particular it is
not known whether the cycle containing 8 is finite or infinite. Nevertheless, the factorization routine
included in this package can determine a factorization of this permutation into class transpositions,
i.e. involutions interchanging two disjoint residue classes:

Example

gap> Collatz in CT(Integers); # `Collatz' lies in the simple group CT(Z).

true

gap> Length(Factorization(Collatz));

212

Setting the Info level of InfoRCWA equal to 2 (simply issue RCWAInfo(2);) causes the factorization
routine to display detailed information on the progress of the factoring process. For reasons of saving
space, this is not done in this manual.

We would like to get a factorization into fewer factors. Firstly, we try to factor the inverse – just
like the various options interpreted by the factorization routine, this has influence on decisions taken
during the factoring process:

Example

gap> Length(Factorization(Collatz^-1));

129

This is already a shorter product, but can still be improved. We remember the mKnot’s, of which the
permutation mKnot(3) looks very similar to Collatz’ permutation. Therefore it is straightforward to
try to factor both mKnot(3) and Collatz/mKnot(3), and to look whether the sum of the numbers of
factors is less than 129:

Example

gap> KnotFacts := Factorization(mKnot(3));;

gap> QuotFacts := Factorization(Collatz/mKnot(3));;

gap> List([KnotFacts,QuotFacts],Length);

[59, 9]

gap> CollatzFacts := Concatenation(QuotFacts,KnotFacts);

[(0(6), 4(6)), (0(6), 5(6)), (0(6), 3(6)), (0(6), 1(6)),

(0(6), 2(6)), (2(3), 4(6)), (0(3), 4(6)), (2(3), 1(6)),

(0(3), 1(6)), (0(36), 35(36)), (0(36), 22(36)),

(0(36), 18(36)), (0(36), 17(36)), (0(36), 14(36)),

(0(36), 20(36)), (0(36), 4(36)), (2(36), 8(36)),

(2(36), 16(36)), (2(36), 13(36)), (2(36), 9(36)),

(2(36), 7(36)), (2(36), 6(36)), (2(36), 3(36)),

(2(36), 10(36)), (2(36), 15(36)), (2(36), 12(36)),

(2(36), 5(36)), (21(36), 28(36)), (21(36), 33(36)),

(21(36), 30(36)), (21(36), 23(36)), (21(36), 34(36)),

(21(36), 31(36)), (21(36), 27(36)), (21(36), 25(36)),

(21(36), 24(36)), (26(36), 32(36)), (26(36), 29(36)),

(10(18), 35(36)), (5(18), 35(36)), (10(18), 17(36)),

(5(18), 17(36)), (8(12), 14(24)), (6(9), 17(18)),

(3(9), 17(18)), (0(9), 17(18)), (6(9), 16(18)), (3(9), 16(18)),

(0(9), 16(18)), (6(9), 11(18)), (3(9), 11(18)), (0(9), 11(18)),

RCWA 82

(6(9), 4(18)), (3(9), 4(18)), (0(9), 4(18)), (0(6), 14(24)),

(0(6), 2(24)), (8(12), 17(18)), (7(12), 17(18)),

(8(12), 11(18)), (7(12), 11(18)), PrimeSwitch(3)^-1,

(7(12), 17(18)), (2(6), 17(18)), (0(3), 17(18)),

PrimeSwitch(3)^-1, PrimeSwitch(3)^-1, PrimeSwitch(3)^-1]

gap> Product(CollatzFacts) = Collatz; # Check.

true

The factors PrimeSwitch(3) are products of 6 class transpositions (cf. PrimeSwitch (2.5.2)).
Enter AssignGlobals(LoadRCWAExamples().CollatzlikePerms); in order to assign the

global variables defined in this section.

7.3 The 3n+1 group

The following group acts transitively on the set of positive integers for which the 3n+ 1 conjecture
holds and which are not divisible by 6:

Example

gap> a := ClassTransposition(1,2,4,6);;

gap> b := ClassTransposition(1,3,2,6);;

gap> c := ClassTransposition(2,3,4,6);;

gap> G := Group(a,b,c);

<(1(2),4(6)),(1(3),2(6)),(2(3),4(6))>

gap> data := LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions();;

gap> data.Id3CTsGroup(G,data.grps); # the 'catalogue number' of G

44132

To see this, consider the action of G on the “3n+ 1 tree”. The vertices of this tree are the positive
integers for which the 3n+1 conjecture holds, and for every vertex n there is an edge from n to T (n),
where T denotes the Collatz mapping

T : Z−→ Z, n 7−→

{
n
2 if n is even,
3n+1

2 if n is odd

(cf. Chapter 1). It is easy to check that for every vertex n, either a, b or c maps n to T (n), and that the
other two generators either fix n or map it to one of its preimages under T . So the 3n+1 conjecture is
equivalent to the assertion that the group G acts transitively on N\0(6). First let’s have a look at balls
of small radius about 1 under the action of G – these consist of those numbers whose trajectory under
T reaches 1 quickly:

Example

gap> Ball(G,1,5,OnPoints);

[1, 2, 4, 5, 8, 10, 16, 32, 64]

gap> Ball(G,1,10,OnPoints);

[1, 2, 3, 4, 5, 8, 10, 13, 16, 20, 21, 26, 32, 40, 52, 53, 64, 80, 85,

128, 160, 170, 256, 320, 340, 341, 512, 1024, 2048]

gap> Ball(G,1,15,OnPoints);

[1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 16, 17, 20, 21, 22, 23, 26, 32, 34,

RCWA 83

35, 40, 44, 45, 46, 52, 53, 64, 68, 69, 70, 75, 80, 85, 104, 106, 113,

128, 136, 140, 141, 151, 160, 170, 208, 212, 213, 226, 227, 256, 272,

277, 280, 301, 302, 320, 340, 341, 416, 424, 452, 453, 454, 512, 640,

680, 682, 832, 848, 853, 904, 908, 909, 1024, 1280, 1360, 1364, 1365,

1664, 1696, 1706, 1808, 1813, 1816, 2048, 2560, 2720, 2728, 4096,

5120, 5440, 5456, 5461, 8192, 10240, 10880, 10912, 10922, 16384,

32768, 65536]

gap> Ball(G,1,15,OnPoints:Spheres);

[[1], [2, 4], [8], [16], [5, 32], [10, 64],

[3, 20, 21, 128], [40, 256], [13, 80, 85, 512],

[26, 160, 170, 1024], [52, 53, 320, 340, 341, 2048],

[17, 104, 106, 113, 640, 680, 682, 4096],

[34, 35, 208, 212, 213, 226, 227, 1280, 1360, 1364, 1365, 8192],

[11, 68, 69, 70, 75, 416, 424, 452, 453, 454, 2560, 2720, 2728, 16384

],

[22, 23, 136, 140, 141, 151, 832, 848, 853, 904, 908, 909, 5120,

5440, 5456, 5461, 32768],

[7, 44, 45, 46, 272, 277, 280, 301, 302, 1664, 1696, 1706, 1808,

1813, 1816, 10240, 10880, 10912, 10922, 65536]]

gap> List(Ball(G,1,50,OnPoints:Spheres),Length);

[1, 2, 1, 1, 2, 2, 4, 2, 4, 4, 6, 8, 12, 14, 17, 20, 26, 32, 43, 52,

66, 81, 104, 133, 170, 211, 271, 335, 424, 542, 686, 873, 1096, 1376,

1730, 2205, 2794, 3522, 4429, 5611, 7100, 8978, 11343, 14296, 18058,

22828, 28924, 36532, 46146, 58399, 73713]

gap> FloatQuotientsList(last);

[2., 0.5, 1., 2., 1., 2., 0.5, 2., 1., 1.5, 1.33333, 1.5, 1.16667,

1.21429, 1.17647, 1.3, 1.23077, 1.34375, 1.2093, 1.26923, 1.22727,

1.28395, 1.27885, 1.2782, 1.24118, 1.28436, 1.23616, 1.26567, 1.2783,

1.26568, 1.27259, 1.25544, 1.25547, 1.25727, 1.27457, 1.26712,

1.26056, 1.25752, 1.26688, 1.26537, 1.26451, 1.26342, 1.26034,

1.26315, 1.26415, 1.26704, 1.26303, 1.26317, 1.26553, 1.26223]

gap> Difference(Filtered([1..100],n->n mod 6 <> 0),Ball(G,1,40,OnPoints));

[27, 31, 41, 47, 55, 62, 63, 71, 73, 82, 83, 91, 94, 95, 97]

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);;

gap> List(last2,n->Length(Trajectory(T,n,[1])));

[71, 68, 70, 67, 72, 69, 69, 66, 74, 71, 71, 60, 68, 68, 76]

It is convenient to define an epimorphism from the free group of rank 3 to G:
Example

gap> F := FreeGroup("a","b","c");

<free group on the generators [a, b, c]>

gap> phi := EpimorphismByGenerators(F,G);

[a, b, c] -> [(1(2), 4(6)), (1(3), 2(6)), (2(3), 4(6))]

We can compute balls about 1 in G:
Example

gap> B := Ball(G,One(G),7:Spheres);;

gap> List(B,Length);

RCWA 84

[1, 3, 6, 12, 24, 48, 96, 192]

gap> List(B[3],Order);

[12, infinity, infinity, infinity, infinity, 12]

gap> List(B[3],g->PreImagesRepresentative(phi,g));

[b*a, c*b, c*a, b*c, a*c, a*b]

gap> g := a*b;; Order(g);;

gap> Display(g);

Rcwa permutation of Z with modulus 18, of order 12

(1(6), 8(36), 4(18), 2(12)) (3(6), 20(36), 10(18))

(5(6), 32(36), 16(18))

Spending some more time to compute B := Ball(G,One(G),12:Spheres);;, one can check that
(ab)12 is the shortest word in the generators of G which does not represent the identity in the free
product of 3 cyclic groups of order 2, but which represents the identity in G. However, the group G
has elements of other finite orders as well – for example:

Example

gap> g := (b*a)^3*b*c;; Order(g);;

gap> Display(g);

Rcwa permutation of Z with modulus 36, of order 105

(8(9), 16(18), 64(72), 256(288), 85(96), 128(144), 32(36))

(7(12), 11(18), 22(36)) (5(18), 10(36), 40(144), 13(48),

20(72)) (1(24), 2(36), 4(72)) (14(36), 28(72), 112(288),

37(96), 56(144))

gap> Order(a*c*b*a*b*c*a*c);

60

With some more efforts, one finds that e.g. (abc)2cb has order 616, that (abc)2b has order 2310, that
(ab)2acabc has order 27720, and that a(c(ab)2)2 has order 65520. Of course G has many elements of
infinite order as well. Some of them have infinite cycles, like e.g.

Example

gap> g := b*c;;

gap> Display(g);

Rcwa permutation of Z with modulus 12

/

| 4n if n in 1(3)

| 2n if n in 5(6)

n |-> < n/2 if n in 2(12)

| n/4 if n in 8(12)

| n if n in 0(3)

\

RCWA 85

gap> Sinks(g);

[4(12)]

gap> Trajectory(g,last[1],10);

[4(12), 16(48), 64(192), 256(768), 1024(3072), 4096(12288),

16384(49152), 65536(196608), 262144(786432), 1048576(3145728)]

gap> Trajectory(g,4,20);

[4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304,

16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184,

68719476736, 274877906944, 1099511627776]

Others seem to have only finite cycles. Some of these appear to have “on average” comparatively
“short” cycles, like e.g.

Example

gap> g := a*b*a*c*b*c;

<rcwa permutation of Z with modulus 144>

gap> cycs := ShortCycles(g,[0..10000],100,10^20);;

gap> Difference([0..10000],Union(cycs));

[]

gap> Collected(List(cycs,Length));

[[1, 2222], [3, 1945], [4, 1111], [5, 93], [6, 926],

[7, 31], [8, 864], [9, 10], [10, 289], [11, 4], [12, 95],

[13, 1], [14, 31], [16, 12], [18, 4], [20, 1]]

If the cycle of g containing some n ∈ Z is finite and has a certain length l, then there is some m ∈ Z
such that for every k ∈ Z the cycle of g containing n+ km has length l as well. Thus, in other words,
every finite cycle of g “belongs to” a cycle of residue classes. (This is a special property of g which is
not shared by every rcwa permutation – cf. e.g. Collatz’ permutation from Section 7.2.) We can find
some of these infinitely many “residue class cycles”:

Example

gap> cycsrc := ShortResidueClassCycles(g,Mod(g),20);

[[0(6)], [3(6), 160(288), 20(36)],

[7(18), 352(864), 44(108), 28(72)],

[11(18), 544(864), 2896(4608), 362(576), 68(108), 88(144)],

[13(18), 640(864), 80(108), 52(72)], [10(36)], [34(36)],

[1(54), 64(2592), 8(324), 4(216), 16(1152), 2(144)],

[5(54), 256(2592), 1360(13824), 170(1728), 32(324), 40(432),

208(2304), 26(288)],

[17(54), 832(2592), 4432(13824), 23632(73728), 2954(9216), 554(1728),

104(324), 136(432)],

[37(54), 1792(2592), 224(324), 148(216), 784(1152), 98(144)],

[41(54), 1984(2592), 10576(13824), 1322(1728), 248(324), 328(432),

1744(2304), 218(288)],

[53(54), 2560(2592), 13648(13824), 72784(73728), 9098(9216),

1706(1728), 320(324), 424(432)], [38(72), 58(108), 304(576)],

[62(72), 94(108), 496(576)]]

gap> List(cycsrc,Length);

[1, 3, 4, 6, 4, 1, 1, 6, 8, 8, 6, 8, 8, 3, 3]

RCWA 86

gap> Sum(List(Flat(cycsrc),cl->1/Mod(cl)));

97459/110592

gap> Float(last); # about 88% 'coverage'

0.881248

gap> cycsrc := ShortResidueClassCycles(g,3*Mod(g),20);

[[0(6)], [3(6), 160(288), 20(36)],

[7(18), 352(864), 44(108), 28(72)],

[11(18), 544(864), 2896(4608), 362(576), 68(108), 88(144)],

[13(18), 640(864), 80(108), 52(72)], [10(36)], [34(36)],

[1(54), 64(2592), 8(324), 4(216), 16(1152), 2(144)],

[5(54), 256(2592), 1360(13824), 170(1728), 32(324), 40(432),

208(2304), 26(288)],

[17(54), 832(2592), 4432(13824), 23632(73728), 2954(9216), 554(1728),

104(324), 136(432)],

[37(54), 1792(2592), 224(324), 148(216), 784(1152), 98(144)],

[41(54), 1984(2592), 10576(13824), 1322(1728), 248(324), 328(432),

1744(2304), 218(288)],

[53(54), 2560(2592), 13648(13824), 72784(73728), 9098(9216),

1706(1728), 320(324), 424(432)], [38(72), 58(108), 304(576)],

[62(72), 94(108), 496(576)],

[23(162), 1120(7776), 5968(41472), 746(5184), 140(972), 184(1296),

976(6912), 5200(36864), 650(4608), 122(864)],

[35(162), 1696(7776), 9040(41472), 48208(221184), 257104(1179648),

32138(147456), 6026(27648), 1130(5184), 212(972), 280(1296)],

[73(162), 3520(7776), 440(972), 292(648), 1552(3456), 8272(18432),

1034(2304), 194(432)],

[77(162), 3712(7776), 19792(41472), 2474(5184), 464(972), 616(1296),

3280(6912), 17488(36864), 2186(4608), 410(864)],

[89(162), 4288(7776), 22864(41472), 121936(221184), 650320(1179648),

81290(147456), 15242(27648), 2858(5184), 536(972), 712(1296)],

[127(162), 6112(7776), 764(972), 508(648), 2704(3456), 14416(18432),

1802(2304), 338(432)],

[14(216), 22(324), 112(1728), 592(9216), 74(1152)],

[86(216), 130(324), 688(1728), 3664(9216), 458(1152)]]

gap> List(cycsrc,Length);

[1, 3, 4, 6, 4, 1, 1, 6, 8, 8, 6, 8, 8, 3, 3, 10, 10, 8, 10, 10, 8, 5,

5]

gap> Sum(List(Flat(cycsrc),Density));

5097073/5308416

gap> Float(last); # already about 96% 'coverage'

0.960187

There are also some elements of infinite order whose cycles seem to be all finite, but “on average”
pretty “long” – e.g.

Example

gap> g := (b*a*c)^2*a;;

gap> Display(g);

Rcwa permutation of Z with modulus 288

/

RCWA 87

| (16n-1)/3 if n in 1(3)

| (9n+5)/4 if n in 3(24) U 11(24)

| (27n+19)/4 if n in 15(24) U 23(24)

| (n-3)/6 if n in 21(24)

| (3n+1)/4 if n in 5(24)

| (9n+7)/8 if n in 17(48) U 33(48)

| (27n+29)/8 if n in 9(48) U 41(48)

| (4n-11)/9 if n in 32(36)

n |-> < (2n-7)/9 if n in 8(36)

| (27n+38)/8 if n in 14(48)

| (3n+2)/8 if n in 26(48)

| (9n+10)/8 if n in 38(48)

| (3n+4)/4 if n in 20(72)

| n/4 if n in 56(72)

| (9n+14)/16 if n in 2(96)

| (27n+58)/16 if n in 50(96)

| n if n in 0(6)

\

gap> List([1..100],n->Length(Cycle(g,n)));

[6, 1, 6, 6, 6, 1, 194, 6, 216, 26, 26, 1, 26, 194, 65, 26, 26, 1, 216,

26, 6, 216, 46, 1, 640, 26, 70, 194, 216, 1, 70, 26, 216, 216, 26, 1,

194, 216, 73, 26, 110, 1, 194, 216, 194, 111, 39, 1, 194, 640, 640,

194, 26, 1, 171, 194, 204, 640, 216, 1, 111, 70, 91, 26, 194, 1, 216,

216, 26, 111, 65, 1, 50, 194, 26, 216, 640, 1, 502, 26, 111, 40, 110,

1, 26, 194, 385, 640, 88, 1, 100, 111, 65, 110, 416, 1, 171, 194, 194,

640]

gap> Length(Cycle(g,25));

640

gap> Maximum(Cycle(g,25));

323270249684063829

gap> Length(Cycle(g,25855));

4751

gap> Maximum(Cycle(g,25855));

507359605810239426786254778159924369135184044618585904603866210104085

gap> cycs := ShortCycles(g,[0..50000],10000,10^100);;

gap> S := [0..50000];;

gap> for cyc in cycs do S := Difference(S,cyc); od;

gap> S; # no cycle containing some n in [0..50000] has length > 10000

[]

Taking a look at the lengths of the trajectories of the Collatz mapping T starting at the points in a
cycle, we can see how a cycle of g goes “up and down” in the 3n+1 tree:

Example

gap> List(Cycle(g,25),n->Length(Trajectory(T,n,[1])));

[17, 21, 25, 29, 33, 31, 35, 34, 32, 33, 37, 41, 45, 44, 42, 39, 43,

41, 45, 44, 42, 43, 40, 38, 35, 39, 37, 41, 40, 44, 48, 46, 50, 49,

47, 48, 45, 42, 46, 44, 48, 47, 45, 46, 50, 49, 47, 43, 41, 38, 39,

36, 34, 30, 27, 31, 29, 33, 32, 30, 31, 35, 33, 37, 36, 40, 39, 43,

41, 45, 44, 42, 43, 47, 51, 55, 53, 57, 56, 54, 55, 59, 58, 62, 66,

64, 68, 67, 65, 66, 63, 60, 64, 62, 66, 65, 63, 64, 68, 67, 65, 61,

RCWA 88

59, 56, 52, 49, 53, 51, 55, 54, 52, 53, 57, 55, 59, 58, 56, 57, 54,

50, 48, 45, 49, 47, 51, 50, 54, 52, 56, 55, 53, 54, 58, 62, 66, 70,

74, 72, 76, 75, 79, 83, 87, 91, 90, 94, 93, 97, 95, 99, 98, 96, 97,

94, 91, 88, 85, 89, 87, 91, 90, 88, 89, 86, 84, 81, 85, 83, 87, 86,

90, 94, 98, 97, 101, 105, 109, 107, 111, 110, 108, 109, 113, 117, 115,

119, 118, 122, 126, 125, 123, 120, 124, 122, 126, 125, 123, 124, 121,

119, 116, 117, 114, 111, 115, 113, 117, 116, 114, 115, 119, 123, 122,

120, 117, 121, 119, 123, 122, 120, 121, 118, 116, 112, 110, 106, 103,

107, 105, 109, 108, 106, 107, 111, 109, 113, 112, 116, 114, 118, 117,

115, 116, 113, 110, 111, 108, 104, 102, 99, 103, 101, 105, 104, 108,

106, 110, 109, 107, 108, 112, 111, 109, 105, 102, 103, 100, 98, 95,

92, 96, 94, 98, 97, 95, 96, 93, 91, 88, 92, 90, 94, 93, 97, 101, 105,

109, 108, 106, 103, 107, 105, 109, 108, 106, 107, 104, 102, 99, 103,

101, 105, 104, 108, 112, 110, 114, 113, 111, 112, 116, 115, 113, 109,

106, 110, 108, 112, 111, 109, 110, 114, 112, 116, 115, 113, 114, 111,

107, 105, 102, 103, 100, 98, 95, 99, 97, 101, 100, 104, 103, 107, 105,

109, 108, 106, 107, 104, 101, 98, 99, 96, 94, 91, 92, 89, 87, 84, 85,

82, 80, 77, 81, 79, 83, 82, 86, 85, 89, 88, 86, 83, 80, 81, 78, 76,

73, 74, 71, 68, 72, 70, 74, 73, 71, 72, 76, 80, 79, 83, 87, 91, 90,

88, 85, 89, 87, 91, 90, 88, 89, 86, 84, 81, 85, 83, 87, 86, 90, 94,

92, 96, 95, 93, 94, 98, 96, 100, 99, 97, 98, 102, 106, 110, 114, 113,

111, 108, 112, 110, 114, 113, 111, 112, 109, 107, 104, 108, 106, 110,

109, 113, 117, 115, 119, 118, 116, 117, 114, 111, 115, 113, 117, 116,

114, 115, 119, 118, 116, 112, 110, 107, 108, 105, 103, 100, 104, 102,

106, 105, 109, 108, 112, 110, 114, 113, 111, 112, 116, 115, 113, 109,

106, 103, 104, 101, 99, 95, 91, 88, 92, 90, 94, 93, 91, 92, 96, 94,

98, 97, 95, 96, 100, 98, 102, 101, 105, 104, 102, 99, 100, 97, 93, 89,

87, 84, 85, 82, 80, 77, 74, 78, 76, 80, 79, 77, 78, 75, 73, 69, 67,

64, 68, 66, 70, 69, 73, 71, 75, 74, 72, 73, 70, 67, 68, 65, 63, 60,

64, 62, 66, 65, 69, 68, 66, 63, 64, 61, 59, 56, 60, 58, 62, 61, 65,

64, 62, 59, 60, 57, 55, 51, 48, 49, 46, 44, 40, 37, 34, 35, 32, 28,

26, 23, 27, 25, 29, 28, 32, 30, 34, 33, 31, 32, 36, 35, 33, 29, 26,

27, 24, 22, 19, 23, 21, 25, 24, 28, 27, 25, 22, 23, 20, 18, 14, 18,

22, 20, 24, 23, 21, 22, 19, 16, 20, 18, 22, 21, 19, 20, 24, 23, 21,

17, 15, 17, 15, 19, 18, 16]

gap> lngs := List(Cycle(g,25855),n->Length(Trajectory(T,n,[1])));;

gap> Minimum(lngs);

55

gap> Maximum(lngs);

521

gap> Position(lngs,55);

15

gap> Position(lngs,521);

2807

Finally let’s have a look at elements of G with small modulus:
Example

gap> B := RestrictedBall(G,One(G),20,36:Spheres);;

gap> List(B,Length);

[1, 3, 6, 12, 4, 6, 6, 4, 4, 4, 6, 6, 3, 3, 2, 0, 0, 0, 0, 0, 0]

gap> Sum(last);

RCWA 89

70

gap> Position(last2,0)-2;

14

So we have 70 elements of modulus 36 or less in G which can be reached from the identity by succes-
sive multiplication with generators without passing elements with mudulus exceeding 36. Further we
see that the longest word in the generators yielding an element with modulus at most 36 has length 14.
Now we double our bound on the modulus:

Example

gap> B := RestrictedBall(G,One(G),100,72:Spheres);;

gap> List(B,Length);

[1, 3, 6, 12, 22, 14, 18, 22, 24, 26, 26, 34, 35, 32, 37, 38, 46, 58,

65, 73, 82, 91, 93, 96, 110, 121, 114, 117, 146, 138, 148, 168, 174,

196, 215, 214, 232, 255, 280, 305, 315, 359, 377, 371, 363, 366, 397,

419, 401, 405, 405, 401, 407, 415, 435, 424, 401, 359, 338, 330, 332,

281, 278, 271, 269, 254, 255, 257, 258, 258, 233, 215, 202, 185, 154,

121, 88, 55, 35, 20, 10, 5, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0]

gap> Sum(last);

15614

gap> Position(last2,0)-2;

83

gap> Collected(List(Flat(B),Modulus));

[[1, 1], [6, 3], [12, 4], [18, 2], [24, 4], [36, 56],

[48, 4], [72, 15540]]

We observe that there are 15540 elements in G with modulus 72 which are “reachable” from the iden-
tity by successive multiplication with generators without passing elements with mudulus exceeding
72. Further we see that the longest word in the generators yielding an element with modulus at most
72 has length 83.

It is obvious that many questions regarding the group G remain open.

7.4 A group with huge finite orbits

In this section we investigate a group which has huge finite orbits on Z.
Example

gap> a := ClassTransposition(0,2,1,2);;

gap> b := ClassTransposition(0,5,4,5);;

gap> c := ClassTransposition(1,4,0,6);;

gap> G := Group(a,b,c);

<(0(2),1(2)),(0(5),4(5)),(1(4),0(6))>

gap> data := LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions();;

gap> data.Id3CTsGroup(G,data.grps); # the 'catalogue number' of G

1284

We look for orbits of length at most 100 containing an integer in the range [0..1000]:

RCWA 90

Example

gap> orbs := ShortOrbits(G,[0..1000],100);;

gap> List(orbs,Length);

[16, 2, 24, 2, 2, 2, 8, 2, 8, 2, 2, 8, 2, 8, 2, 2, 2, 40, 2, 8, 24, 2,

8, 2, 2, 8, 2, 24, 8, 2, 56, 2, 2, 2, 8, 2, 8, 2, 2, 8, 2, 8, 2, 2, 2,

24, 2, 8, 2, 8, 2, 2, 8, 2, 8, 2, 24, 2, 2, 2, 8, 2, 8, 2, 2, 8, 2, 8,

2, 2, 2, 2, 8, 24, 2, 8, 2, 2, 8, 2, 24, 8, 2, 2, 2, 2, 8, 2, 8, 2, 2,

8, 2, 8, 2, 2, 2, 24, 2, 8, 2, 8, 2, 2, 8, 2, 8, 2, 24, 2, 2]

gap> Collected(last);

[[2, 67], [8, 32], [16, 1], [24, 9], [40, 1], [56, 1]]

gap> Length(Difference([0..1000],Union(orbs)));

491

So almost half of the integers in the range [0..1000] lie in orbits of length larger than 100. In fact
there are much larger orbits. For example:

Example

gap> B := Ball(G,32,500,OnPoints:Spheres);; # compute ball about 32

gap> Position(B,[]); # <> fail -> we have exhausted the orbit

354

gap> Sum(List(B,Length)); # the orbit length

6296

gap> Maximum(Flat(B)); # the largest integer in the orbit

3301636381609509797437679

gap> B := Ball(G,736,5000,OnPoints:Spheres);; # the same for 736 ...

gap> Position(B,[]);

2997

gap> Sum(List(B,Length)); # the orbit length for this time

495448

gap> Maximum(Flat(B));

2461374276522713949036151811903149785690151467356354652860276957152301465\

0546360696627187194849439881973442451686685024708652634593861146709752378\

847078493406287854573381920553713155967741550498839

It seems that the cycles of abc completely traverse all orbits of G, with the only exception of the orbit
of 0. Let’s check this in the above examples:

Example

gap> g := a*b*c;;

gap> Display(g);

Rcwa permutation of Z with modulus 60

/

| n-1 if n in 3(30) U 9(30) U 17(30) U 23(30) U 27(30) U

| 29(30)

| 3n/2 if n in 0(20) U 12(20) U 16(20)

| n+1 if n in 2(20) U 6(20) U 10(20)

| (2n+1)/3 if n in 7(30) U 13(30) U 19(30)

RCWA 91

| n+3 if n in 1(30) U 11(30)

n |-> < n-5 if n in 15(30) U 25(30)

| (3n+12)/2 if n in 4(20)

| (3n-12)/2 if n in 8(20)

| n+5 if n in 14(20)

| n-3 if n in 18(20)

| (2n-7)/3 if n in 5(30)

| (2n+9)/3 if n in 21(30)

\

gap> Length(Cycle(g,32));

6296

gap> Length(Cycle(g,736));

495448

Representatives and lengths of the cycles of g which intersect nontrivially with the range [0..1000]
are as follows:

Example

gap> CycleRepresentativesAndLengths(g,[0..1000]:notify:=50000);

n = 736: after 50000 steps, the iterate has 157 binary digits.

n = 736: after 100000 steps, the iterate has 135 binary digits.

n = 736: after 150000 steps, the iterate has 131 binary digits.

n = 736: after 200000 steps, the iterate has 507 binary digits.

n = 736: after 250000 steps, the iterate has 414 binary digits.

n = 736: after 300000 steps, the iterate has 457 binary digits.

n = 736: after 350000 steps, the iterate has 465 binary digits.

n = 736: after 400000 steps, the iterate has 325 binary digits.

n = 736: after 450000 steps, the iterate has 534 binary digits.

n = 896: after 50000 steps, the iterate has 359 binary digits.

n = 896: after 100000 steps, the iterate has 206 binary digits.

[[1, 15], [2, 2], [16, 24], [22, 2], [26, 2], [32, 6296],

[46, 2], [52, 8], [56, 296], [62, 2], [76, 8], [82, 2],

[86, 2], [92, 8], [106, 2], [112, 104], [116, 8],

[122, 2], [136, 440], [142, 2], [146, 2], [152, 40],

[166, 2], [172, 8], [176, 24], [182, 2], [196, 8],

[202, 2], [206, 2], [212, 8], [226, 2], [232, 24],

[236, 8], [242, 2], [256, 56], [262, 2], [266, 2],

[272, 408], [286, 2], [292, 8], [296, 104], [302, 2],

[316, 8], [322, 2], [326, 2], [332, 8], [346, 2],

[352, 264], [356, 8], [362, 2], [376, 1304], [382, 2],

[386, 2], [392, 24], [406, 2], [412, 8], [416, 200],

[422, 2], [436, 8], [442, 2], [446, 2], [452, 8],

[466, 2], [472, 104], [476, 8], [482, 2], [496, 24],

[502, 2], [506, 2], [512, 696], [526, 2], [532, 8],

[536, 3912], [542, 2], [556, 8], [562, 2], [566, 2],

[572, 8], [586, 2], [592, 888], [596, 8], [602, 2],

[616, 728], [622, 2], [626, 2], [632, 2776], [646, 2],

[652, 8], [656, 24], [662, 2], [676, 8], [682, 2],

[686, 2], [692, 8], [706, 2], [712, 24], [716, 8],

[722, 2], [736, 495448], [742, 2], [746, 2], [752, 1272],

[766, 2], [772, 8], [776, 376], [782, 2], [796, 8],

RCWA 92

[802, 2], [806, 2], [812, 8], [826, 2], [832, 120],

[836, 8], [842, 2], [856, 2264], [862, 2], [866, 2],

[872, 24], [886, 2], [892, 8], [896, 132760], [902, 2],

[916, 8], [922, 2], [926, 2], [932, 8], [946, 2],

[952, 456], [956, 8], [962, 2], [976, 24], [982, 2],

[986, 2], [992, 1064]]

So far the author has checked that all positive integers less than 173176 lie in finite cycles of g. Several
of them are longer than 1000000, and the cycle containing 25952 has length 245719352. Whether the
cycle containing 173176 is finite or infinite has not been checked so far – in any case it is longer than
5700000000, and it exceeds 1040000. Presumably it is finite as well, but checking this may require a
lot of computing time.

On the one hand the cycles of g seem to behave “randomly”, perhaps as if they would ascend or
descend from one point to the next by a certain factor depending on which side a thrown coin falls
on. – In this “model”, cycles would be finite with probability 1 since the simple random walk on Z
is recurrent. On the other, there seems to be quite some structure on them, however little is known so
far.

First we observe that each orbit under the action of G seems to split into two cycles of h := abcacb
of the same length (of course this has been checked for many more orbits than those shown here):

Example

gap> h := a*b*c*a*c*b;

<rcwa permutation of Z with modulus 360>

gap> List(CyclesOnFiniteOrbit(G,h,32),Length);

[3148, 3148]

gap> List(CyclesOnFiniteOrbit(G,h,736),Length);

[247724, 247724]

One cycle seems to contain the points at the odd positions and the other seems to contain the points at
the even positions in the cycle of g:

Example

gap> cycle_g := Cycle(g,32);;

gap> positions1 := List(Cycle(h,32),n->Position(cycle_g,n));;

gap> Collected(positions1 mod 2);

[[1, 3148]]

gap> positions2 := List(Cycle(h,33),n->Position(cycle_g,n));;

gap> Collected(positions2 mod 2);

[[0, 3148]]

However the ordering in which these points are traversed looks pretty “scrambled”:
Example

gap> positions1{[1..200]};

[1, 6271, 6291, 6281, 6285, 6287, 6283, 6289, 6273, 6275, 6277, 6279,

6293, 5, 15, 17, 19, 6259, 6261, 6263, 6265, 21, 23, 25, 41, 6227,

6229, 6231, 6233, 6235, 6237, 6239, 43, 53, 55, 57, 63, 59, 61, 65,

RCWA 93

45, 47, 49, 51, 67, 6223, 6221, 69, 6163, 6215, 6205, 6209, 6211,

6207, 6213, 6165, 6171, 6177, 6179, 6181, 6183, 6175, 6173, 6185,

6189, 6191, 6187, 6193, 6169, 6167, 6195, 6199, 6201, 6197, 6203,

6217, 73, 83, 85, 87, 103, 113, 115, 117, 4357, 4361, 4363, 4359,

4365, 4371, 4373, 4375, 4377, 4369, 4367, 4379, 119, 121, 123, 125,

129, 131, 127, 133, 139, 141, 143, 145, 137, 135, 147, 149, 151, 153,

155, 159, 161, 157, 163, 169, 175, 4283, 4281, 177, 4271, 4273, 4275,

4277, 181, 4255, 4257, 4259, 4261, 4263, 4265, 4267, 183, 2161, 2163,

4195, 4199, 4201, 4197, 4203, 4209, 4211, 4213, 4215, 4207, 4205,

4217, 2165, 2167, 2169, 2171, 2175, 2177, 2173, 2179, 2185, 2187,

2189, 2191, 2183, 2181, 2193, 2195, 2197, 2199, 2201, 2467, 2469,

4117, 4121, 4123, 4119, 4125, 4131, 4133, 4135, 4137, 4129, 4127,

4139, 2471, 2473, 2475, 2477, 2487, 2489, 2491, 2507, 2517, 2519,

2521, 2537, 3923, 3925, 3941, 3943]

7.5 A group which acts 4-transitively on the positive integers

In this section, we would like to show that the group G generated by the two permutations
Example

gap> a := RcwaMapping([[3,0,2],[3,1,4],[3,0,2],[3,-1,4]]);;

gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;

gap> SetName(a,"a"); SetName(u,"u"); G := Group(a,u);;

which we have already investigated in earlier examples acts 4-transitively on the set of positive inte-
gers. Obviously, it acts on the set of positive integers. First we show that this action is transitive. We
start by checking in which residue classes sufficiently large positive integers are mapped to smaller
ones by a suitable group element:

Example

gap> List([a,a^-1,u,u^-1],DecreasingOn);

[1(2), 0(3), 0(5) U 2(5), 2(3)]

gap> Union(last);

Z \ 4(30) U 16(30) U 28(30)

We see that we cannot always choose such a group element from the set of generators and their
inverses – otherwise the union would be Integers.

Example

gap> List([a,a^-1,u,u^-1,a^2,a^-2,u^2,u^-2],DecreasingOn);

[1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9),

0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9)]

gap> Union(last); # Still not enough ...

Z \ 4(90) U 58(90) U 76(90)

gap> List([a,a^-1,u,u^-1,a^2,a^-2,u^2,u^-2,a*u,u*a,(a*u)^-1,(u*a)^-1],

> DecreasingOn);

[1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9),

RCWA 94

0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9),

3(5) U 0(10) U 7(20) U 9(20), 0(5) U 2(5), 2(3), 3(9) U 4(9) U 8(9)]

gap> Union(last); # ... but that's it!

Integers

Finally, we have to deal with “small” integers. We use the notation for the coefficients of rcwa
mappings introduced at the beginning of this manual. Let cr(m) > ar(m). Then we easily see that
(ar(m)n+ br(m))/cr(m) > n implies n < br(m)/(cr(m)− ar(m)). Thus we can restrict our considerations
to integers n < bmax, where bmax is the largest second entry of a coefficient triple of one of the group
elements in our list:

Example

gap> List([a,a^-1,u,u^-1,a^2,a^-2,u^2,u^-2,a*u,u*a,(a*u)^-1,(u*a)^-1],

> f->Maximum(List(Coefficients(f),c->c[2])));

[1, 1, 4, 2, 7, 7, 56, 28, 25, 17, 17, 11]

gap> Maximum(last);

56

Thus this upper bound is 56. The rest is easy – all we have to do is to check that the orbit containing 1
contains also all other positive integers less than or equal to 56:

Example

gap> S := [1];;

gap> while not IsSubset(S,[1..56]) do

> S := Union(S,S^a,S^u,S^(a^-1),S^(u^-1));

> od;

gap> IsSubset(S,[1..56]);

true

Checking 2-transitivity is computationally harder, and in the sequel we will omit some steps which
are in practice needed to find out “what to do”. The approach taken here is to show that the stabilizer
of 1 in G acts transitively on the set of positive integers greater than 1. We do this by similar means
as used above for showing the transitivity of the action of G on the positive integers. We start by
determining all products of at most 5 generators and their inverses, which stabilize 1 (taking at most
4-generator products would not suffice!):

Example

gap> gens := [a,u,a^-1,u^-1];;

gap> tups := Concatenation(List([1..5],k->Tuples([1..4],k)));;

gap> Length(tups);

1364

gap> tups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],

> l->PositionSublist(tup,l)=fail));;

gap> Length(tups);

484

gap> stab := [];;

gap> for tup in tups do

> n := 1;

RCWA 95

> for i in tup do n := n^gens[i]; od;

> if n = 1 then Add(stab,tup); fi;

> od;

gap> Length(stab);

118

gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i])));;

gap> ForAll(stabelm,elm->1^elm=1); # Check.

true

The resulting products have various different not quite small moduli:
Example

gap> List(stabelm,Modulus);

[4, 3, 16, 25, 9, 81, 64, 100, 108, 100, 25, 75, 27, 243, 324, 243,

256, 400, 144, 400, 100, 432, 324, 400, 80, 400, 625, 25, 75, 135,

150, 75, 225, 81, 729, 486, 729, 144, 144, 81, 729, 1296, 729, 6561,

1024, 1600, 192, 1600, 400, 576, 432, 1600, 320, 1600, 2500, 100, 100,

180, 192, 192, 108, 972, 1728, 972, 8748, 1600, 400, 320, 80, 1600,

2500, 300, 2500, 625, 625, 75, 675, 75, 75, 135, 405, 600, 120, 600,

1875, 75, 225, 405, 225, 225, 675, 243, 2187, 729, 2187, 216, 216,

243, 2187, 1944, 2187, 19683, 576, 144, 576, 432, 81, 81, 729, 2187,

5184, 324, 8748, 243, 2187, 19683, 26244, 19683]

gap> Lcm(last);

12597120000

gap> Collected(Factors(last));

[[2, 10], [3, 9], [5, 4]]

Similar as before, we determine for any of the above mappings the residue classes whose elements
larger than the largest br(m) - coefficient of the respective mapping are mapped to smaller integers:

Example

gap> decs := List(stabelm,DecreasingOn);;

gap> List(decs,Modulus);

[2, 3, 8, 25, 9, 9, 16, 100, 12, 50, 25, 75, 27, 81, 54, 81, 64, 400,

48, 200, 100, 72, 108, 400, 80, 200, 625, 25, 75, 45, 75, 75, 225, 81,

243, 81, 243, 144, 144, 81, 243, 216, 243, 243, 128, 1600, 64, 400,

400, 48, 144, 1600, 320, 400, 2500, 100, 100, 60, 96, 192, 108, 324,

144, 324, 972, 400, 400, 80, 80, 400, 2500, 100, 1250, 625, 625, 25,

75, 75, 75, 45, 135, 600, 120, 150, 1875, 75, 225, 135, 225, 225, 675,

243, 729, 243, 729, 108, 216, 243, 729, 162, 729, 2187, 144, 144, 144,

144, 81, 81, 243, 729, 1296, 324, 972, 243, 729, 2187, 1458, 2187]

gap> Lcm(last);

174960000

Since the least common multiple of the moduli of these unions of residue classes is as large as
174960000, directly forming their union and checking whether it is equal to the set of integers would
take relatively much time and memory. However, starting with the set of integers and subtracting the
above sets one-by-one in a suitably chosen order is cheap:

RCWA 96

Example

gap> SortParallel(decs,stabelm,

> function(S1,S2)

> return First([1..100],k->Factorial(k) mod Modulus(S1)=0)

> < First([1..100],k->Factorial(k) mod Modulus(S2)=0);

> end);

gap> S := Integers;;

gap> for i in [1..Length(decs)] do

> S_old := S; S := Difference(S,decs[i]);

> if S <> S_old then ViewObj(S); Print("\n"); fi;

> if S = [] then maxind := i; break; fi;

> od;

0(2)

2(6) U 4(6)

<union of 8 residue classes (mod 30)>

<union of 19 residue classes (mod 90) (9 classes)>

<union of 114 residue classes (mod 720)>

<union of 99 residue classes (mod 720)>

<union of 57 residue classes (mod 720)>

<union of 54 residue classes (mod 720)>

<union of 41 residue classes (mod 720)>

<union of 35 residue classes (mod 720)>

<union of 8 residue classes (mod 720) (6 classes)>

4(720) U 94(720) U 148(720) U 238(720)

<union of 24 residue classes (mod 5760)>

<union of 72 residue classes (mod 51840)>

<union of 48 residue classes (mod 51840)>

<union of 192 residue classes (mod 259200)>

<union of 168 residue classes (mod 259200)>

<union of 120 residue classes (mod 259200)>

<union of 96 residue classes (mod 259200)>

<union of 72 residue classes (mod 259200)>

<union of 60 residue classes (mod 259200)>

<union of 48 residue classes (mod 259200)>

<union of 24 residue classes (mod 259200)>

<union of 12 residue classes (mod 259200) (6 classes)>

<union of 24 residue classes (mod 777600)>

<union of 12 residue classes (mod 777600) (6 classes)>

111604(194400) U 14404(777600) U 208804(777600)

[]

Similar as above, it remains to check that the “small” integers all lie in the orbit containing 2. Ob-
viously, it is sufficient to check that any integer greater than 2 is mapped to a smaller one by some
suitably chosen element of the stabilizer under consideration:

Example

gap> Maximum(List(stabelm{[1..maxind]},

> f->Maximum(List(Coefficients(f),c->c[2]))));

6581

gap> Filtered([3..6581],n->Minimum(List(stabelm,elm->n^elm))>=n);

RCWA 97

[4]

We have to treat 4 separately:
Example

gap> 1^(u*a*u^2*a^-1*u);

1

gap> 4^(u*a*u^2*a^-1*u);

3

Now we know that any positive integer greater than 1 lies in the same orbit under the action of the
stabilizer of 1 in G as 2, thus that this stabilizer acts transitively on N \ {1}. But this means that we
have established the 2-transitivity of the action of G on N.

In the following, we essentially repeat the above steps to show that this action is indeed 3-
transitive:

Example

gap> tups := Concatenation(List([1..6],k->Tuples([1..4],k)));;

gap> tups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],

> l->PositionSublist(tup,l)=fail));;

gap> stab := [];;

gap> for tup in tups do

> l := [1,2];

> for i in tup do l := List(l,n->n^gens[i]); od;

> if l = [1,2] then Add(stab,tup); fi;

> od;

gap> Length(stab);

212

gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i])));;

gap> decs := List(stabelm,DecreasingOn);;

gap> SortParallel(decs,stabelm,function(S1,S2)

> return First([1..100],k->Factorial(k) mod Mod(S1)=0)

> < First([1..100],k->Factorial(k) mod Mod(S2)=0); end);

gap> S := Integers;;

gap> for i in [1..Length(decs)] do

> S_old := S; S := Difference(S,decs[i]);

> if S <> S_old then ViewObj(S); Print("\n"); fi;

> if S = [] then break; fi;

> od;

Z \ 1(8) U 7(8)

<union of 151 residue classes (mod 240)>

<union of 208 residue classes (mod 720)>

<union of 51 residue classes (mod 720)>

<union of 45 residue classes (mod 720)>

<union of 39 residue classes (mod 720)>

<union of 33 residue classes (mod 720)>

<union of 23 residue classes (mod 720)>

<union of 19 residue classes (mod 720) (7 classes)>

<union of 17 residue classes (mod 720) (6 classes)>

<union of 16 residue classes (mod 720) (7 classes)>

RCWA 98

<union of 14 residue classes (mod 720) (9 classes)>

<union of 8 residue classes (mod 720) (6 classes)>

<union of 7 residue classes (mod 720) (6 classes)>

238(360) U 4(720) U 148(720) U 454(720)

<union of 38 residue classes (mod 5760)>

<union of 37 residue classes (mod 5760)>

<union of 25 residue classes (mod 5760)>

<union of 21 residue classes (mod 5760)>

<union of 17 residue classes (mod 5760) (13 classes)>

<union of 16 residue classes (mod 5760) (12 classes)>

<union of 138 residue classes (mod 51840)>

<union of 48 residue classes (mod 51840)>

<union of 32 residue classes (mod 51840)>

<union of 20 residue classes (mod 51840) (14 classes)>

<union of 16 residue classes (mod 51840) (12 classes)>

<union of 68 residue classes (mod 259200)>

<union of 42 residue classes (mod 259200)>

<union of 32 residue classes (mod 259200)>

<union of 26 residue classes (mod 259200)>

<union of 25 residue classes (mod 259200)>

<union of 11 residue classes (mod 259200) (10 classes)>

<union of 10 residue classes (mod 259200) (9 classes)>

<union of 7 residue classes (mod 259200) (6 classes)>

13414(129600) U 2164(259200) U 66964(259200) U 228964(259200)

2164(259200) U 66964(259200) U 228964(259200)

[]

gap> Maximum(List(stabelm,f->Maximum(List(Coefficients(f),c->c[2]))));

515816

gap> smallnum := [4..515816];;

gap> for i in [1..Length(stabelm)] do

> smallnum := Filtered(smallnum,n->n^stabelm[i]>=n);

> od;

gap> smallnum;

[]

The same for 4-transitivity:
Example

gap> tups := Concatenation(List([1..8],k->Tuples([1..4],k)));;

gap> tups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],

> l->PositionSublist(tup,l)=fail));;

gap> stab := [];;

gap> for tup in tups do

> l := [1,2,3];

> for i in tup do l := List(l,n->n^gens[i]); od;

> if l = [1,2,3] then Add(stab,tup); fi;

> od;

gap> Length(stab);

528

gap> stabelm := [];;

gap> for i in [1..Length(stab)] do

> elm := One(G);

RCWA 99

> for j in stab[i] do

> if Modulus(elm) > 10000 then elm := fail; break; fi;

> elm := elm * gens[j];

> od;

> if elm <> fail then Add(stabelm,elm); fi;

> od;

gap> Length(stabelm);

334

gap> decs := List(stabelm,DecreasingOn);;

gap> SortParallel(decs,stabelm,

> function(S1,S2)

> return First([1..100],k->Factorial(k) mod Modulus(S1) = 0)

> < First([1..100],k->Factorial(k) mod Modulus(S2) = 0);

> end);

gap> S := Integers;;

gap> for i in [1..Length(decs)] do

> S_old := S; S := Difference(S,decs[i]);

> if S <> S_old then ViewObj(S); Print("\n"); fi;

> if S = [] then maxind := i; break; fi;

> od;

Z \ 1(8) U 7(8)

<union of 46 residue classes (mod 72)>

<union of 20 residue classes (mod 72) (8 classes)>

4(18)

<union of 28 residue classes (mod 576)>

<union of 22 residue classes (mod 576)>

<union of 21 residue classes (mod 576)>

40(72) U 4(144) U 94(144) U 346(576) U 418(576)

<union of 16 residue classes (mod 576) (6 classes)>

<union of 15 residue classes (mod 576) (6 classes)>

4(144) U 94(144) U 346(576) U 418(576)

<union of 30 residue classes (mod 5184)>

<union of 26 residue classes (mod 5184)>

<union of 6 residue classes (mod 1296)>

<union of 504 residue classes (mod 129600)>

<union of 324 residue classes (mod 129600)>

<union of 282 residue classes (mod 129600)>

<union of 239 residue classes (mod 129600)>

<union of 218 residue classes (mod 129600)>

<union of 194 residue classes (mod 129600)>

<union of 154 residue classes (mod 129600)>

<union of 97 residue classes (mod 129600)>

<union of 85 residue classes (mod 129600)>

<union of 77 residue classes (mod 129600)>

<union of 67 residue classes (mod 129600)>

<union of 125 residue classes (mod 259200)>

<union of 108 residue classes (mod 259200)>

<union of 107 residue classes (mod 259200)>

<union of 101 residue classes (mod 259200)>

<union of 100 residue classes (mod 259200)>

<union of 84 residue classes (mod 259200)>

<union of 80 residue classes (mod 259200)>

<union of 76 residue classes (mod 259200)>

RCWA 100

<union of 70 residue classes (mod 259200)>

<union of 66 residue classes (mod 259200)>

<union of 54 residue classes (mod 259200)>

<union of 53 residue classes (mod 259200)>

<union of 47 residue classes (mod 259200)>

<union of 43 residue classes (mod 259200)>

<union of 31 residue classes (mod 259200)>

<union of 24 residue classes (mod 259200)>

<union of 23 residue classes (mod 259200)>

<union of 13 residue classes (mod 259200) (8 classes)>

57406(129600) U 115006(129600) U 192676(259200) U 250276(259200)

57406(129600) U 192676(259200) U 250276(259200) U 374206(388800)

57406(129600) U 192676(259200) U 250276(259200)

250276(259200) U 57406(388800) U 316606(388800) U 451876(777600)

316606(388800) U 451876(777600) U 509476(777600) U 768676(777600)

<union of 18 residue classes (mod 3110400) (6 classes)>

451876(777600) U 509476(777600) U 705406(777600) U 768676(777600)

U 2649406(3110400)

451876(777600) U 705406(777600) U 768676(777600) U 2649406(3110400)

451876(777600) U 705406(777600) U 2649406(3110400)

705406(777600) U 2007076(3110400) U 2649406(3110400) U 2784676(3110400)

<union of 14 residue classes (mod 9331200) (8 classes)>

2260606(2332800) U 5759806(9331200) U 5895076(9331200) U 8227876(9331200)

4593406(6998400) U 15091006(27993600) U 17559076(27993600)

U 24557476(27993600)

<union of 14 residue classes (mod 83980800) (8 classes)>

18590206(20995200) U 24557476(83980800) U 45552676(83980800)

U 71078206(83980800)

[]

gap> Maximum(List(stabelm{[1..maxind]},

> f->Maximum(List(Coefficients(f),c->c[2]))));

58975

gap> smallnum := [5..58975];;

gap> for i in [1..maxind] do

> smallnum := Filtered(smallnum,n->n^stabelm[i]>=n);

> od;

gap> smallnum;

[]

There is even some evidence that the degree of transitivity of the action of G on the positive integers
is higher than 4:

Example

gap> phi := EpimorphismFromFreeGroup(G);

[a, u] -> [a, u]

gap> F := Source(phi);

<free group on the generators [a, u]>

gap> List([5..20],

> n->RepresentativeActionPreImage(G,[1,2,3,4,5],

> [1,2,3,4,n],OnTuples,F));

[<identity ...>, a^-3*u^4*a*u^-2*a^2, a^-1*(a^-1*u)^4*a^-1*u^-1*a,

a^4*u^-2*a^-4, a^-1*u^-4*a, (u^2*a^-1)^2*u^-2, u^-2*a^-2*u^4,

RCWA 101

a^-1*u^2*a, a^-1*u^-6*a, a^2*u^4*a^2*u^2, u^-4*a*u^-2*a^-3,

a^-1*u^-2*a^-3*u^4*a^2, a^2*(a*u^2)^2, (a*u^-4)^2*a^-2,

u^-2*a*u^2*a*u^-2, u^-4*a^2*u^2]

Enter AssignGlobals(LoadRCWAExamples().CollatzlikePerms); in order to assign the global
variables defined in this section.

7.6 A group which acts 3-transitively, but not 4-transitively on Z

In this section, we would like to show that the group G generated by the two permutations n 7→ n+1
and τ1(2),0(4) acts 3-transitively, but not 4-transitively on the set of integers.

Example

gap> G := Group(ClassShift(0,1),ClassTransposition(1,2,0,4));

<rcwa group over Z with 2 generators>

gap> IsTame(G);

false

gap> (G.1^-2*G.2)^3*(G.1^2*G.2)^3; # G <> the free product C_infty * C_2.

IdentityMapping(Integers)

gap> Display(G:CycleNotation:=false);

Wild rcwa group over Z, generated by

[

Tame rcwa permutation of Z: n -> n + 1

Rcwa permutation of Z with modulus 4, of order 2

/

| 2n-2 if n in 1(2)

n |-> < (n+2)/2 if n in 0(4)

| n if n in 2(4)

\

]

This group acts transitively on Z, since already the cyclic group generated by the first of the two
generators does so. Next we have to show that it acts 2-transitively. We essentially proceed as in the
example in the previous section, by checking that the stabilizer of 0 acts transitively on Z\{0}.

Example

gap> gens := [ClassShift(0,1)^-1,ClassTransposition(1,2,0,4),

> ClassShift(0,1)];;

gap> tups := Concatenation(List([1..6],k->Tuples([-1,0,1],k)));;

gap> tups := Filtered(tups,tup->ForAll([[0,0],[-1,1],[1,-1]],

> l->PositionSublist(tup,l)=fail));;

gap> Length(tups);

189

gap> stab := [];;

RCWA 102

gap> for tup in tups do

> n := 0;

> for i in tup do n := n^gens[i+2]; od;

> if n = 0 then Add(stab,tup); fi;

> od;

gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i+2])));;

gap> Collected(List(stabelm,Modulus));

[[4, 6], [8, 4], [16, 3]]

gap> decs := List(stabelm,DecreasingOn);

[0(4), 3(4), 0(4), 3(4), 2(4), 0(4), 4(8), 2(4), 2(4), 0(4), 1(4),

0(8), 3(8)]

gap> Union(decs);

Integers

Similar as in the previous section, it remains to check that the integers with “small” absolute value all
lie in the orbit containing 1 under the action of the stabilizer of 0:

Example

gap> Maximum(List(stabelm,f->Maximum(List(Coefficients(f),

> c->AbsInt(c[2])))));

21

gap> S := [1];;

gap> for elm in stabelm do S := Union(S,S^elm,S^(elm^-1)); od;

gap> IsSubset(S,Difference([-21..21],[0])); # Not yet ..

false

gap> for elm in stabelm do S := Union(S,S^elm,S^(elm^-1)); od;

gap> IsSubset(S,Difference([-21..21],[0])); # ... but now!

true

Now we have to check for 3-transitivity. Since we cannot find for every residue class an element of
the pointwise stabilizer of {0,1} which properly divides its elements, we also have to take additions
and subtractions into consideration. Since the moduli of all of our stabilizer elements are quite small,
simply looking at sets of representatives is cheap:

Example

gap> tups := Concatenation(List([1..10],k->Tuples([-1,0,1],k)));;

gap> tups := Filtered(tups,tup->ForAll([[0,0],[-1,1],[1,-1]],

> l->PositionSublist(tup,l)=fail));;

gap> Length(tups);

3069

gap> stab := [];;

gap> for tup in tups do

> l := [0,1];

> for i in tup do l := List(l,n->n^gens[i+2]); od;

> if l = [0,1] then Add(stab,tup); fi;

> od;

gap> Length(stab);

10

gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i+2])));;

gap> Maximum(List(stabelm,Modulus));

RCWA 103

8

gap> Maximum(List(stabelm,

> f->Maximum(List(Coefficients(f),c->AbsInt(c[2])))));

8

gap> decsp := List(stabelm,elm->Filtered([9..16],n->n^elm<n));

[[9, 13], [10, 12, 14, 16], [12, 16], [9, 13], [12, 16],

[9, 11, 13, 15], [9, 11, 13, 15], [12, 16], [12, 16],

[9, 11, 13, 15]]

gap> Union(decsp);

[9, 10, 11, 12, 13, 14, 15, 16]

gap> decsm := List(stabelm,elm->Filtered([-16..-9],n->n^elm>n));

[[-15, -13, -11, -9], [-16, -12], [-16, -12], [-15, -11],

[-16, -14, -12, -10], [-15, -11], [-15, -11],

[-16, -14, -12, -10], [-16, -14, -12, -10], [-15, -11]]

gap> Union(decsm);

[-16, -15, -14, -13, -12, -11, -10, -9]

gap> S := [2];;

gap> for elm in stabelm do S := Union(S,S^elm,S^(elm^-1)); od;

gap> IsSubset(S,Difference([-8..8],[0,1]));

true

At this point we have established 3-transitivity. It remains to check that the group G does not act
4-transitively. We do this by checking that it is not transitive on 4-tuples (mod 4). Since n mod 8
determines the image of n under a generator of G (mod 4), it suffices to compute (mod 8):

Example

gap> orb := [[0,1,2,3]];;

gap> extend := function ()

> local gen;

> for gen in gens do

> orb := Union(orb,List(orb,l->List(l,n->n^gen) mod 8));

> od;

> end;;

gap> repeat

> old := ShallowCopy(orb);

> extend(); Print(Length(orb),"\n");

> until orb = old;

7

27

97

279

573

916

1185

1313

1341

1344

1344

gap> Length(Set(List(orb,l->l mod 4)));

120

gap> last < 4^4;

RCWA 104

true

This shows that G acts not 4-transitively on Z. The corresponding calculation for 3-tuples looks as
follows:

Example

gap> orb := [[0,1,2]];;

gap> repeat

> old := ShallowCopy(orb);

> extend(); Print(Length(orb),"\n");

> until orb = old;

7

27

84

207

363

459

503

512

512

gap> Length(Set(List(orb,l->l mod 4)));

64

gap> last = 4^3;

true

Needless to say that the latter kind of argumentation is not suitable for proving, but only for disproving
k-transitivity.

7.7 An rcwa mapping which seems to be contracting, but very slow

The iterates of an integer under the Collatz mapping T seem to approach its contraction centre – this
is the finite set where all trajectories end up after a finite number of steps – rather quickly and do not
get very large before doing so (of course this is a purely heuristic statement as the 3n+1 conjecture
has not been proved so far!):

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);;

gap> S0 := LikelyContractionCentre(T,100,1000);

#I Warning: `LikelyContractionCentre' is highly probabilistic.

The returned result can only be regarded as a rough guess.

See ?LikelyContractionCentre for more information.

[-136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5,

-1, 0, 1, 2]

gap> S0^T = S0; # This holds by definition of the contraction centre.

true

gap> List([1..30],n->Length(Trajectory(T,n,S0)));

[1, 1, 5, 2, 4, 6, 11, 3, 13, 5, 10, 7, 7, 12, 12, 4, 9, 14, 14, 6, 6,

11, 11, 8, 16, 8, 70, 13, 13, 13]

gap> Maximum(List([1..1000],n->Length(Trajectory(T,n,S0))));

RCWA 105

113

gap> Maximum(List([1..1000],n->Maximum(Trajectory(T,n,S0))));

125252

The following mapping seems to be contracting as well, but its trajectories are much longer:
Example

gap> f6 := RcwaMapping([[1,0,6],[5, 1,6],[7,-2,6],

> [11,3,6],[11,-2,6],[11,-1,6]]);;

gap> Display(f6);

Rcwa mapping of Z with modulus 6

/

| n/6 if n in 0(6)

| (5n+1)/6 if n in 1(6)

| (7n-2)/6 if n in 2(6)

n |-> < (11n+3)/6 if n in 3(6)

| (11n-2)/6 if n in 4(6)

| (11n-1)/6 if n in 5(6)

|

\

gap> S0 := LikelyContractionCentre(f6,1000,100000);;

#I Warning: `LikelyContractionCentre' is highly probabilistic.

The returned result can only be regarded as a rough guess.

See ?LikelyContractionCentre for more information.

gap> Trajectory(f6,25,S0);

[25, 21, 39, 72, 12, 2]

gap> List([1..100],n->Length(Trajectory(f6,n,S0)));

[1, 1, 3, 4, 1, 2, 3, 2, 1, 5, 7, 2, 8, 17, 3, 16, 1, 4, 17, 6, 5, 2,

5, 5, 6, 1, 4, 2, 15, 1, 1, 3, 2, 5, 13, 3, 2, 3, 4, 1, 8, 4, 4, 2, 7,

19, 23517, 3, 9, 3, 1, 18, 14, 2, 20, 23512, 14, 2, 6, 6, 1, 4, 19,

12, 23511, 8, 23513, 10, 1, 13, 13, 3, 1, 23517, 7, 20, 7, 9, 9, 6,

12, 8, 6, 18, 14, 23516, 31, 12, 23545, 4, 21, 19, 5, 1, 17, 17, 13,

19, 6, 23515]

gap> Maximum(Trajectory(f6,47,S0));

7363391777762473304431877054771075818733690108051469808715809256737742295\

45698886054

Computing the trajectory of 3224 takes quite a while – this trajectory ascends to about 3 · 102197,
before it approaches the fixed point 2 after 19949562 steps.

When constructing the mapping f6, the denominators of the partial mappings have been chosen
to be equal and the numerators have been chosen to be numbers coprime to the common denominator,
whose product is just a little bit smaller than the Modulus(f6)th power of the denominator. In the
example we have 5 ·7 ·113 = 46585 and 66 = 46656.

Although the trajectories of T are much shorter than those of f6, it seems likely that this does
not make the problem of deciding whether the mapping T is contracting essentially easier – even for
mappings with much shorter trajectories than T the problem seems to be equally hard. A solution can

RCWA 106

usually only be found in trivial cases, i.e. for example when there is some k such that applying the kth
power of the respective mapping to any integer decreases its absolute value.

Enter AssignGlobals(LoadRCWAExamples().SlowlyContractingMappings); in order to
assign the global variables defined in this section.

7.8 Checking a result by P. Andaloro

In [And00], P. Andaloro has shown that proving that trajectories of integers n ∈ 1(16) under the
Collatz mapping always contain 1 would be sufficient to prove the 3n+ 1 conjecture. In the sequel,
this result is verified by RCWA. Checking that the union of the images of the residue class 1(16) under
powers of the Collatz mapping T contains Z\0(3) is obviously enough. Thus we put S := 1(16), and
successively unite the set S with its image under T :

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);

<rcwa mapping of Z with modulus 2>

gap> S := ResidueClass(Integers,16,1);

1(16)

gap> S := Union(S,S^T);

1(16) U 2(24)

gap> S := Union(S,S^T);

1(12) U 2(24) U 17(48) U 33(48)

gap> S := Union(S,S^T);

<union of 30 residue classes (mod 144)>

gap> S := Union(S,S^T);

<union of 42 residue classes (mod 144)>

gap> S := Union(S,S^T);

<union of 172 residue classes (mod 432)>

gap> S := Union(S,S^T);

<union of 676 residue classes (mod 1296)>

gap> S := Union(S,S^T);

<union of 810 residue classes (mod 1296)>

gap> S := Union(S,S^T);

<union of 2638 residue classes (mod 3888)>

gap> S := Union(S,S^T);

<union of 33 residue classes (mod 48)>

gap> S := Union(S,S^T);

<union of 33 residue classes (mod 48)>

gap> Union(S,ResidueClass(Integers,3,0)); # Et voila ...

Integers

Further similar computations are shown in Section 7.17.
Enter AssignGlobals(LoadRCWAExamples().CollatzMapping); in order to assign the global

variables defined in this section.

7.9 Two examples by Matthews and Leigh

In [ML87], K. R. Matthews and G. M. Leigh have shown that two trajectories of the following (sur-
jective, but not injective) mappings are acyclic (mod x) and divergent:

RCWA 107

Example

gap> x := Indeterminate(GF(4),1);; SetName(x,"x");

gap> R := PolynomialRing(GF(2),1);

GF(2)[x]

gap> ML1 := RcwaMapping(R,x,[[1,0,x],[(x+1)^3,1,x]]*One(R));;

gap> ML2 := RcwaMapping(R,x,[[1,0,x],[(x+1)^2,1,x]]*One(R));;

gap> Display(ML1);

Rcwa mapping of GF(2)[x] with modulus x

/

| P/x if P in 0(x)

P |-> < ((x^3+x^2+x+1)*P + 1)/x if P in 1(x)

|

\

gap> Display(ML2);

Rcwa mapping of GF(2)[x] with modulus x

/

| P/x if P in 0(x)

P |-> < ((x^2+1)*P + 1)/x if P in 1(x)

|

\

gap> List([ML1,ML2],IsSurjective);

[true, true]

gap> List([ML1,ML2],IsInjective);

[false, false]

gap> traj1 := Trajectory(ML1,One(R),16);

[1, x^2+x+1, x^4+x^2+x, x^3+x+1, x^5+x^4+x^2, x^4+x^3+x, x^3+x^2+1,

x^5+x^2+1, x^7+x^6+x^5+x^3+1, x^9+x^7+x^6+x^5+x^3+x+1,

x^11+x^10+x^8+x^7+x^6+x^5+x^2, x^10+x^9+x^7+x^6+x^5+x^4+x,

x^9+x^8+x^6+x^5+x^4+x^3+1, x^11+x^8+x^7+x^6+x^4+x+1,

x^13+x^12+x^11+x^8+x^7+x^6+x^4, x^12+x^11+x^10+x^7+x^6+x^5+x^3]

gap> traj2 := Trajectory(ML2,(x^3+x+1)*One(R),16);

[x^3+x+1, x^4+x+1, x^5+x^3+x^2+x+1, x^6+x^3+1, x^7+x^5+x^4+x^2+x,

x^6+x^4+x^3+x+1, x^7+x^4+x^3+x+1, x^8+x^6+x^5+x^4+x^3+x+1,

x^9+x^6+x^3+x+1, x^10+x^8+x^7+x^5+x^4+x+1,

x^11+x^8+x^7+x^5+x^4+x^3+x^2+x+1, x^12+x^10+x^9+x^8+x^7+x^5+1,

x^13+x^10+x^7+x^4+x, x^12+x^9+x^6+x^3+1,

x^13+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x,

x^12+x^10+x^9+x^7+x^6+x^4+x^3+x+1]

The pattern which Matthews and Leigh used to show the divergence of the above trajectories can be
recognized easily by looking at the corresponding Markov chains with the two states 0 mod x and
1 mod x:

Example

gap> traj1modx := Trajectory(ML1,One(R),400,x);;

RCWA 108

gap> traj2modx := Trajectory(ML2,(x^3+x+1)*One(R),600,x);;

gap> List(traj1modx{[1..150]},val->Position([Zero(R),One(R)],val)-1);

[1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,

1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,

1, 1,

1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

gap> List(traj2modx{[1..150]},val->Position([Zero(R),One(R)],val)-1);

[1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

What is important here are the lengths of the intervals between two changes from one state to the
other:

Example

gap> ChangePoints := l->Filtered([1..Length(l)-1],pos->l[pos]<>l[pos+1]);;

gap> Diffs := l->List([1..Length(l)-1],pos->l[pos+1]-l[pos]);;

gap> Diffs(ChangePoints(traj1modx)); # The pattern in the first ...

[1, 1, 2, 4, 2, 2, 4, 8, 4, 4, 8, 16, 8, 8, 16, 32, 16, 16, 32, 64, 32,

32, 64]

gap> Diffs(ChangePoints(traj2modx)); # ... and in the second example.

[1, 7, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 97, 1, 1, 1, 1, 1, 1, 1,

1, 1,

1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 193, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1,

1, 1,

1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

gap> Diffs(ChangePoints(last)); # Make this a bit more obvious.

[1, 3, 1, 7, 1, 15, 1, 31, 1, 63, 1]

This looks clearly acyclic, thus the trajectories diverge. Needless to say however that this computa-
tional evidence does not replace the proof along these lines given in the article cited above, but just
sheds a light on the idea behind it.

Enter AssignGlobals(LoadRCWAExamples().MatthewsLeigh); in order to assign the global
variables defined in this section.

7.10 Orders of commutators

We enter some wild rcwa permutation:

RCWA 109

Example

gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;

gap> IsTame(u);;

gap> Display(u);

Wild rcwa permutation of Z with modulus 5

/

| 3n/5 if n in 0(5)

| (9n+1)/5 if n in 1(5)

n |-> < (3n-1)/5 if n in 2(5)

| (9n-2)/5 if n in 3(5)

| (9n+4)/5 if n in 4(5)

\

We would like to compute the order of [u,n 7→ n+ k] and [u2,n 7→ n+ k] for different values of k:
Example

gap> nu := ClassShift(0,1);; # n -> n + 1

gap> l := Filtered([0..100],k->IsTame(Comm(u,nu^k)));

[0, 2, 3, 5, 6, 9, 10, 12, 13, 15, 17, 18, 20, 21, 24, 25, 27, 28, 30,

32, 33, 35, 36, 39, 40, 42, 43, 45, 47, 48, 50, 51, 54, 55, 57, 58,

60, 62, 63, 65, 66, 69, 70, 72, 73, 75, 77, 78, 80, 81, 84, 85, 87,

88, 90, 92, 93, 95, 96, 99, 100]

gap> List(l,k->Order(Comm(u,nu^k)));

[1, 6, 5, 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3, infinity,

infinity, 3, 5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5, infinity,

infinity, infinity, 5, 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3,

infinity, infinity, 3, 5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5,

infinity, infinity, infinity, 5, 3, 5, 5, 3]

gap> u2 := u^2;

<wild rcwa permutation of Z with modulus 25>

gap> Filtered([1..16],k->IsTame(Comm(u2,nu^k))); # k<15->[u^2,nu^k] wild!

[15]

gap> Order(Comm(u2,nu^15));

infinity

gap> u2nu17 := Comm(u2,nu^17);

<rcwa permutation of Z with modulus 81>

gap> cycs := ShortCycles(u2nu17,[-100..100],100);;

gap> List(cycs,Length);

[72, 73, 72, 72, 72, 73, 72, 72, 73, 72, 72, 73, 72, 72, 73, 72, 72,

73, 72, 72, 73, 72, 72]

gap> Lcm(last);

5256

gap> u2nu17^5256; # This element has indeed order 2^3*3^2*73 = 5256.

IdentityMapping(Integers)

gap> u2nu18 := Comm(u2,nu^18);

<rcwa permutation of Z with modulus 81>

gap> cycs := ShortCycles(u2nu18,[-100..100],100);;

gap> List(cycs,Length);

[21, 22, 22, 22, 21, 22, 22, 21, 22, 22, 21, 22, 21, 22, 22, 21, 22,

RCWA 110

22, 21, 22, 22, 21, 22]

gap> Lcm(last);

462

gap> u2nu18^462; # This is an element of order 2*3*7*11 = 462.

IdentityMapping(Integers)

gap> List([Comm(u2,nu^20),Comm(u2,nu^25),Comm(u2,nu^30)],Order);

[29, 9, 15]

We observe that our commutators have various different orders, and that the prime factors of these
orders are not all “very small”.

Enter AssignGlobals(LoadRCWAExamples().CollatzlikePerms); in order to assign the
global variables defined in this section.

7.11 An infinite subgroup of CT(GF(2)[x]) with many torsion elements

In this section, we have a look at the following subgroup of CT(GF(2)[x]):
Example

gap> x := Indeterminate(GF(2));; SetName(x,"x");

gap> R := PolynomialRing(GF(2),1);

GF(2)[x]

gap> a := ClassTransposition(0,x,1,x);;

gap> b := ClassTransposition(0,x^2+1,1,x^2+1);;

gap> c := ClassTransposition(1,x,0,x^2+x);;

gap> G := Group(a,b,c);

<rcwa group over GF(2)[x] with 3 generators>

gap> Display(G);

Rcwa group over GF(2)[x], generated by

[

Rcwa permutation of GF(2)[x]: P -> P + Z(2)^0

Rcwa permutation of GF(2)[x] with modulus x^2+1, of order 2

/

| P + 1 if P in 0(x^2+1) U 1(x^2+1)

P |-> < P if P in x(x^2+1) U x+1(x^2+1)

|

\

Rcwa permutation of GF(2)[x] with modulus x^2+x, of order 2

/

| (x+1)*P + x+1 if P in 1(x)

P |-> < (P + x+1)/(x+1) if P in 0(x^2+x)

| P if P in x(x^2+x)

\

RCWA 111

]

We can easily find 2 normal subgroups of G:
Example

gap> N1 := Subgroup(G,[a*b,a*c]);

<rcwa group over GF(2)[x] with 2 generators>

gap> IsNormal(G,N1);

true

gap> Index(G,N1);

2

gap> G/N1;

Group([(1,2), (1,2), (1,2)])

gap> N2 := Subgroup(G,[a*b*c,a*c]);;

gap> IsNormal(G,N2);

true

gap> IsSubgroup(N1,N2);

false

Products of even numbers of generators of G may have infinite order. For example, we have
Example

gap> Order(a*b);

2

gap> Order(a*c);

infinity

gap> Order(b*c);

infinity

We would like to have a look at orders of products of odd numbers of generators. In order to restrict
our considerations to “essentially different” products (as far as we can easily do this), we use the
following auxiliary function:

GAP code

NormedWords := function (F, lng)

local words, gens, tuples, w;

gens := GeneratorsOfGroup(F);

tuples := EnumeratorOfTuples([1..3],lng);

words := [];

for w in tuples do

if (w[1] = 1 or not 1 in w)

and PositionSublist(w,[1,1]) = fail

and PositionSublist(w,[2,2]) = fail

and PositionSublist(w,[3,3]) = fail

and PositionSublist(w,[2,1]) = fail

and w[1] < w[lng]

RCWA 112

and w{[1,lng]} <> [1,2]

and (w{[1..3]} = [1,2,3] or PositionSublist(w,[1,2,3]) = fail)

then Add(words,w); fi;

od;

words := List(words,word->Product(List(word,i->gens[i])));

return words;

end;

Now let’s compute the possible orders of products of 3, 5, 7 or 9 generators:
Example

gap> F := FreeGroup("a","b","c");;

gap> phi := EpimorphismByGenerators(F,G);

[a, b, c] ->

[ClassTransposition(0,x,1,x), ClassTransposition(0,x^2+1,1,x^2+1),

ClassTransposition(1,x,0,x^2+x)]

gap> B3 := NormedWords(F,3);

[a*b*c]

gap> B3 := List(B3,g->g^phi);

[<rcwa permutation of GF(2)[x] with modulus x^3+x>]

gap> List(B3,Order);

[20]

gap> B5 := NormedWords(F,5);

[a*b*c*a*c, a*b*c*b*c]

gap> B5 := List(B5,g->g^phi);

[<rcwa permutation of GF(2)[x] with modulus x^3+x>,

<rcwa permutation of GF(2)[x] with modulus x^4+x^3+x^2+x>]

gap> List(B5,Order);

[12, 12]

gap> B7 := NormedWords(F,7);

[a*b*c*a*c*a*c, a*b*c*a*c*b*c, a*b*c*b*c*a*c, a*b*c*b*c*b*c]

gap> B7 := List(B7,g->g^phi);

[<rcwa permutation of GF(2)[x] with modulus x^4+x^3+x^2+x>,

<rcwa permutation of GF(2)[x] with modulus x^5+x>,

<rcwa permutation of GF(2)[x] with modulus x^4+x^3+x^2+x>,

<rcwa permutation of GF(2)[x] with modulus x^5+x>]

gap> List(B7,Order);

[12, 12, 12, 30]

gap> B9 := NormedWords(F,9);

[a*b*c*a*b*c*a*b*c, a*b*c*a*c*a*c*a*c, a*b*c*a*c*a*c*b*c, a*b*c*a*c*b*c*a*c,

a*b*c*a*c*b*c*b*c, a*b*c*b*c*a*c*a*c, a*b*c*b*c*a*c*b*c, a*b*c*b*c*b*c*a*c,

a*b*c*b*c*b*c*b*c]

gap> B9 := List(B9,g->g^phi);;

gap> List(B9,Order);

[20, 4, 30, 12, 42, 30, 4, 42, 12]

Enter AssignGlobals(LoadRCWAExamples().OddNumberOfGens_FiniteOrder); in order to as-
sign the global variables defined in this section.

RCWA 113

7.12 An abelian rcwa group over a polynomial ring

We enter a 2-generated abelian wild rcwa group over GF(4)[x]:
Example

gap> x := Indeterminate(GF(4),1);; SetName(x,"x");

gap> R := PolynomialRing(GF(4),1);

GF(2^2)[x]

gap> e := One(GF(4));;

gap> p := x^2 + x + e;; q := x^2 + e;;

gap> r := x^2 + x + Z(4);; s := x^2 + x + Z(4)^2;;

gap> cg := List(AllResidues(R,x^2), pol -> [p, p * pol mod q, q]);;

gap> ch := List(AllResidues(R,x^2), pol -> [r, r * pol mod s, s]);;

gap> g := RcwaMapping(R, q, cg);

<rcwa mapping of GF(2^2)[x] with modulus x^2+1>

gap> h := RcwaMapping(R, s, ch);

<rcwa mapping of GF(2^2)[x] with modulus x^2+x+Z(2^2)^2>

gap> List([g,h],IsTame);

[false, false]

gap> G := Group(g,h);

<rcwa group over GF(2^2)[x] with 2 generators>

gap> IsAbelian(G);

true

gap> IsTame(G);

false

It is easy to see that all orbits on GF(4)[x] under the action of G are finite.
Now we compute the action of the group G on one of its orbits, and make some statistics of the

orbits of G containing polynomials of degree less than 4:
Example

gap> orb := Orbit(G,x^5);

[x^5, x^5+x^4+x^2+1, x^5+x^3+x^2+Z(2^2)*x+Z(2)^0, x^5+x^3,

x^5+x^4+x^3+x^2+Z(2^2)^2*x+Z(2^2)^2, x^5+x, x^5+x^4+x^3,

x^5+x^2+Z(2^2)^2*x, x^5+x^4+x^2+x, x^5+x^3+x^2+Z(2^2)^2*x+Z(2)^0,

x^5+x^4+Z(2^2)*x+Z(2^2), x^5+x^3+x, x^5+x^4+x^3+x^2+Z(2^2)*x+Z(2^2),

x^5+x^4+x^3+x+1, x^5+x^2+Z(2^2)*x, x^5+x^4+Z(2^2)^2*x+Z(2^2)^2]

gap> H := Action(G,orb);

Group([(1,2,4,7,6,9,12,14)(3,5,8,11,10,13,15,16),

(1,3,6,10)(2,5,9,13)(4,8,12,15)(7,11,14,16)])

gap> IsAbelian(H); # check ...

true

gap> IsCyclic(H); # H, and therefore also G, is not cyclic

false

gap> Exponent(H);

8

gap> Collected(List(ShortOrbits(G,AllResidues(R,x^4),100),Length));

[[1, 4], [2, 6], [4, 12], [8, 24]]

Changing the generators a little changes the structure of the group and its action on the underlying
ring a lot:

RCWA 114

Example

gap> cg[1][2] := cg[1][2] + (x^2 + e) * p * q;;

gap> ch[7][2] := ch[7][2] + x * r * s;;

gap> g := RcwaMapping(R, q, cg);; h := RcwaMapping(R, s, ch);;

gap> G := Group(g,h);

<rcwa group over GF(2^2)[x] with 2 generators>

gap> IsAbelian(G);

false

gap> Support(G);

GF(2^2)[x] \ [1, Z(2^2), Z(2^2)^2]

gap> orb := Orbit(G,Zero(R));;

gap> Length(orb);

87

gap> StructureDescription(Action(G,orb));

"A87"

gap> Collected(List(orb,DegreeOfLaurentPolynomial));

[[-infinity, 1], [1, 2], [2, 4], [3, 16], [4, 64]]

gap> S := AllResidues(R,x^6);;

gap> orbs := ShortOrbits(G,S,-1:finite);;

gap> List(orbs,Length);

[87, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 20, 4, 12, 4, 20, 4, 4, 12, 8, 8,

48, 48, 16, 8, 8, 56, 8, 88, 8, 8, 8, 400, 16, 48, 16, 16, 16, 80, 16,

16, 16, 96, 32, 192, 32, 16, 16, 416, 16, 48, 16, 16, 880, 16, 16, 16,

16, 16, 16, 16, 16, 16, 848, 16, 16, 32, 16, 16, 16, 16, 16, 16, 16]

gap> Position(last,880);

55

gap> Set(orbs[55],DegreeOfLaurentPolynomial); # all elm's have same degree

[5]

gap> H := Action(G,orbs[55]);;

gap> IsPrimitive(H,MovedPoints(H));

false

gap> List(Blocks(H,MovedPoints(H)),Length);

[110, 110, 110, 110, 110, 110, 110, 110]

Enter AssignGlobals(LoadRCWAExamples().AbelianGroupOverPolynomialRing); in order to
assign the global variables defined in this section.

7.13 Checking for solvability

Presently there is no general method available for testing wild rcwa groups for solvability. However,
sometimes the question for solvability can be answered anyway. In the example below, the idea is to
find a subgroup U which acts on a finite set S of integers, and which induces on S a non-solvable finite
permutation group:

Example

gap> a := RcwaMapping([[3,0,2],[3, 1,4],[3,0,2],[3,-1,4]]);;

gap> b := RcwaMapping([[3,0,2],[3,13,4],[3,0,2],[3,-1,4]]);;

gap> G := Group(a,b);;

gap> ShortOrbits(Group(Comm(a,b)),[-10..10],100);

RCWA 115

[[-10], [-9], [-30, -21, -14, -13, -11, -8], [-7], [-6],

[-12, -5, -4, -3, -2, 1], [-1], [0], [2], [3],

[4, 5, 6, 7, 10, 15], [8], [9]]

gap> S := [4, 5, 6, 7, 10, 15];;

gap> Cycle(Comm(a,b),4);

[4, 7, 10, 15, 5, 6]

gap> elm := RepresentativeAction(G,S,Permuted(S,(1,4)),OnTuples);

<rcwa permutation of Z with modulus 81>

gap> List(S,n->n^elm);

[7, 5, 6, 4, 10, 15]

gap> U := Group(Comm(a,b),elm);

<rcwa group over Z with 2 generators>

gap> Action(U,S);

Group([(1,4,5,6,2,3), (1,4)])

gap> IsNaturalSymmetricGroup(last);

true

Thus the subgroup U induces on S a natural symmetric group of degree 6. Therefore the group G is
not solvable. We conclude this example by factoring the group element elm into generators:

Example

gap> F := FreeGroup("a","b");

<free group on the generators [a, b]>

gap> RepresentativeActionPreImage(G,S,Permuted(S,(1,4)),OnTuples,F);

a^-2*b^-2*a*b*a^-1*b*a*b^-2*a

gap> a^-2*b^-2*a*b*a^-1*b*a*b^-2*a = elm;

true

Enter AssignGlobals(LoadRCWAExamples().CheckingForSolvability); in order to assign the
global variables defined in this section.

7.14 Some examples over (semi)localizations of the integers

We start with something one can observe when trying to “transfer” an rcwa mapping from the ring of
integers to one of its localizations:

Example

gap> a := RcwaMapping([[3,0,2],[3,1,4],[3,0,2],[3,-1,4]]);;

gap> IsBijective(a);

true

gap> a2 := LocalizedRcwaMapping(a,2);

<rcwa mapping of Z_(2) with modulus 4>

gap> IsSurjective(a2); # As expected

true

gap> IsInjective(a2); # Why not??

false

gap> 0^a2;

0

gap> (1/3)^a2; # That's the reason!

RCWA 116

0

The above can also be explained easily by pointing out that the modulus of the inverse of a is 3, and
that 3 is a unit of Z(2). Moving to Z(2,3) solves this problem:

Example

gap> a23 := SemilocalizedRcwaMapping(a,[2,3]);

<rcwa mapping of Z_(2, 3) with modulus 4>

gap> IsBijective(a23);

true

We get additional finite cycles, e.g.:
Example

gap> List(ShortOrbits(Group(a23),[0..50]/5,50),orb->Cycle(a23,orb[1]));

[[0], [1/5, 2/5, 3/5],

[4/5, 6/5, 9/5, 8/5, 12/5, 18/5, 27/5, 19/5, 13/5, 11/5, 7/5],

[1], [2, 3], [14/5, 21/5, 17/5],

[16/5, 24/5, 36/5, 54/5, 81/5, 62/5, 93/5, 71/5, 52/5, 78/5, 117/5,

89/5, 68/5, 102/5, 153/5, 116/5, 174/5, 261/5, 197/5, 149/5,

113/5, 86/5, 129/5, 98/5, 147/5, 109/5, 83/5, 61/5, 47/5, 34/5,

51/5, 37/5, 29/5, 23/5], [4, 6, 9, 7, 5]]

gap> List(last,Length);

[1, 3, 11, 1, 2, 3, 34, 5]

gap> List(ShortOrbits(Group(a23),[0..50]/7,50),orb->Cycle(a23,orb[1]));

[[0], [-1/7, 1/7], [2/7, 3/7, 4/7, 6/7, 9/7, 5/7], [1],

[2, 3], [4, 6, 9, 7, 5]]

gap> List(last,Length);

[1, 2, 6, 1, 2, 5]

However the structure of a group with prime set P remains invariant under the “transfer” from Z
to Z(P).

“Transferring” a non-invertible rcwa mapping from the ring of integers to some of its
(semi)localizations can also turn it into an invertible one:

Example

gap> v := RcwaMapping([[6,0,1],[1,-7,2],[6,0,1],[1,-1,1],

> [6,0,1],[1, 1,2],[6,0,1],[1,-1,1]]);;

gap> Display(v);

Rcwa mapping of Z with modulus 8

/

| 6n if n in 0(2)

| n-1 if n in 3(4)

n |-> < (n-7)/2 if n in 1(8)

| (n+1)/2 if n in 5(8)

|

RCWA 117

\

gap> IsInjective(v);

true

gap> IsSurjective(v);

false

gap> Image(v);

Z \ 4(12) U 8(12)

gap> Difference(Integers,last);

4(12) U 8(12)

gap> v2 := LocalizedRcwaMapping(v,2);

<rcwa mapping of Z_(2) with modulus 8>

gap> IsBijective(v2);

true

gap> Display(v2^-1);

Rcwa permutation of Z_(2) with modulus 4

/

| 1/3 n / 2 if n in 0(4)

| 2 n + 7 if n in 1(4)

n |-> < n + 1 if n in 2(4)

| 2 n - 1 if n in 3(4)

|

\

gap> S := ResidueClass(Z_pi(2),2,0);; l := [S];;

gap> for i in [1..10] do Add(l,l[Length(l)]^v2); od;

gap> l; # Visibly v2 is wild ...

[0(2), 0(4), 0(8), 0(16), 0(32), 0(64), 0(128), 0(256), 0(512),

0(1024), 0(2048)]

gap> w2 := RcwaMapping(Z_pi(2),[[1,0,2],[2,-1,1],[1,1,1],[2,-1,1]]);;

gap> v2w2 := Comm(v2,w2);; v2w2^-1;;

gap> Display(v2w2);

Rcwa permutation of Z_(2) with modulus 8

/

| 3 n if n in 2(4)

| n + 4 if n in 1(8)

n |-> < n - 4 if n in 5(8)

| n if n in 0(4) U 3(4)

|

\

Again, viewed as an rcwa mapping of the integers the commutator given at the end of the example
would not be surjective.

Enter AssignGlobals(LoadRCWAExamples().Semilocals); in order to assign the global vari-
ables defined in this section.

RCWA 118

7.15 Twisting 257-cycles into an rcwa mapping with modulus 32

We define an rcwa mapping x of order 257 with modulus 32. The easiest way to construct such a
mapping is to prescribe a transition graph and then to assign suitable affine mappings to its vertices.

Example

gap> x_257 := RcwaMapping(

> [[16, 2, 1], [16, 18, 1], [1, 16, 1], [16, 18, 1],

> [1, 16, 1], [16, 18, 1], [1, 16, 1], [16, 18, 1],

> [1, 16, 1], [16, 18, 1], [1, 16, 1], [16, 18, 1],

> [1, 16, 1], [16, 18, 1], [1, 16, 1], [16, 18, 1],

> [1, 0, 16], [16, 18, 1], [1,-14, 1], [16, 18, 1],

> [1,-14, 1], [16, 18, 1], [1,-14, 1], [16, 18, 1],

> [1,-14, 1], [16, 18, 1], [1,-14, 1], [16, 18, 1],

> [1,-14, 1], [16, 18, 1], [1,-14, 1], [1,-31, 1]]);;

gap> Order(x_257);; Display(x_257:CycleNotation:=false);

Rcwa permutation of Z with modulus 32, of order 257

/

| 16n+18 if n in 1(2) \ 31(32)

| n+16 if n in 2(32) U 4(32) U 6(32) U 8(32) U 10(32) U

| 12(32) U 14(32)

| n-14 if n in 18(32) U 20(32) U 22(32) U 24(32) U 26(32) U

n |-> < 28(32) U 30(32)

| 16n+2 if n in 0(32)

| n/16 if n in 16(32)

| n-31 if n in 31(32)

|

\

gap> Display(x_257);

Rcwa permutation of Z with modulus 32, of order 257

(0(32), 2(512), 18(512), 4(512), 20(512), 6(512), 22(512),

8(512), 24(512), 10(512), 26(512), 12(512), 28(512), 14(512),

30(512), 16(512), 1(32), 34(512), 50(512), 36(512), 52(512),

38(512), 54(512), 40(512), 56(512), 42(512), 58(512), 44(512),

60(512), 46(512), 62(512), 48(512), 3(32), 66(512), 82(512),

68(512), 84(512), 70(512), 86(512), 72(512), 88(512), 74(512),

90(512), 76(512), 92(512), 78(512), 94(512), 80(512), 5(32),

98(512), 114(512), 100(512), 116(512), 102(512), 118(512),

104(512), 120(512), 106(512), 122(512), 108(512), 124(512),

110(512), 126(512), 112(512), 7(32), 130(512), 146(512),

132(512), 148(512), 134(512), 150(512), 136(512), 152(512),

138(512), 154(512), 140(512), 156(512), 142(512), 158(512),

144(512), 9(32), 162(512), 178(512), 164(512), 180(512),

166(512), 182(512), 168(512), 184(512), 170(512), 186(512),

172(512), 188(512), 174(512), 190(512), 176(512), 11(32),

194(512), 210(512), 196(512), 212(512), 198(512), 214(512),

200(512), 216(512), 202(512), 218(512), 204(512), 220(512),

206(512), 222(512), 208(512), 13(32), 226(512), 242(512),

RCWA 119

228(512), 244(512), 230(512), 246(512), 232(512), 248(512),

234(512), 250(512), 236(512), 252(512), 238(512), 254(512),

240(512), 15(32), 258(512), 274(512), 260(512), 276(512),

262(512), 278(512), 264(512), 280(512), 266(512), 282(512),

268(512), 284(512), 270(512), 286(512), 272(512), 17(32),

290(512), 306(512), 292(512), 308(512), 294(512), 310(512),

296(512), 312(512), 298(512), 314(512), 300(512), 316(512),

302(512), 318(512), 304(512), 19(32), 322(512), 338(512),

324(512), 340(512), 326(512), 342(512), 328(512), 344(512),

330(512), 346(512), 332(512), 348(512), 334(512), 350(512),

336(512), 21(32), 354(512), 370(512), 356(512), 372(512),

358(512), 374(512), 360(512), 376(512), 362(512), 378(512),

364(512), 380(512), 366(512), 382(512), 368(512), 23(32),

386(512), 402(512), 388(512), 404(512), 390(512), 406(512),

392(512), 408(512), 394(512), 410(512), 396(512), 412(512),

398(512), 414(512), 400(512), 25(32), 418(512), 434(512),

420(512), 436(512), 422(512), 438(512), 424(512), 440(512),

426(512), 442(512), 428(512), 444(512), 430(512), 446(512),

432(512), 27(32), 450(512), 466(512), 452(512), 468(512),

454(512), 470(512), 456(512), 472(512), 458(512), 474(512),

460(512), 476(512), 462(512), 478(512), 464(512), 29(32),

482(512), 498(512), 484(512), 500(512), 486(512), 502(512),

488(512), 504(512), 490(512), 506(512), 492(512), 508(512),

494(512), 510(512), 496(512), 31(32))

gap> Length(Cycle(x_257,0));

257

Enter AssignGlobals(LoadRCWAExamples().LongCyclesOfPrimeLength); in order to assign
the global variables defined in this section.

7.16 The behaviour of the moduli of powers

We give some examples of how the series of the moduli of powers of a given rcwa mapping of the
integers can look like.

Example

gap> a := RcwaMapping([[3,0,2],[3, 1,4],[3,0,2],[3,-1,4]]);;

gap> List([0..4],i->Modulus(a^i));

[1, 4, 16, 64, 256]

gap> e1 := RcwaMapping([[1,4,1],[2,0,1],[1,0,2],[2,0,1]]);;

gap> e2 := RcwaMapping([[1,4,1],[2,0,1],[1,0,2],[1,0,1],

> [1,4,1],[2,0,1],[1,0,1],[1,0,1]]);;

gap> List([e1,e2],Order);

[infinity, infinity]

gap> List([1..20],i->Modulus(e1^i));

[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

gap> List([1..20],i->Modulus(e2^i));

[8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4]

gap> Display(e2);

RCWA 120

Rcwa permutation of Z with modulus 8, of order infinity

/

| n+4 if n in 0(4)

| 2n if n in 1(4)

n |-> < n/2 if n in 2(8)

| n if n in 3(4) U 6(8)

|

\

gap> e2^2 = Restriction(RcwaMapping([[1,2,1]]),RcwaMapping([[4,0,1]]));

true

gap> g:=RcwaMapping([[2,2,1],[1, 4,1],[1,0,2],[2,2,1],[1,-4,1],[1,-2,1]]);;

gap> h:=RcwaMapping([[2,2,1],[1,-2,1],[1,0,2],[2,2,1],[1,-1,1],[1, 1,1]]);;

gap> List([0..7],i->Modulus(g^i));

[1, 6, 12, 12, 12, 12, 6, 1]

gap> List([1..18],i->Modulus((g^3*h)^i));

[12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6]

gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;

gap> List([0..3],i->Modulus(u^i));

[1, 5, 25, 125]

gap> v6 := RcwaMapping([[-1,2,1],[1,-1,1],[1,-1,1]]);;

gap> List([0..6],i->Modulus(v6^i));

[1, 3, 3, 3, 3, 3, 1]

gap> w8 := RcwaMapping([[-1,3,1],[1,-1,1],[1,-1,1],[1,-1,1]]);;

gap> List([0..8],i->Modulus(w8^i));

[1, 4, 4, 4, 4, 4, 4, 4, 1]

gap> z := RcwaMapping([[2,1,1],[1, 1,1],[2,-1,1],[2, -2,1],

> [1,6,2],[1, 1,1],[1,-6,2],[2, 5,1],

> [1,6,2],[1, 1,1],[1, 1,1],[2, -5,1],

> [1,0,1],[1,-4,1],[1, 0,1],[2,-10,1]]);;

gap> IsBijective(z);

true

gap> List([0..25],i->Modulus(z^i));

[1, 16, 32, 64, 64, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256,

256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024]

Enter AssignGlobals(LoadRCWAExamples().ModuliOfPowers); in order to assign the global
variables defined in this section.

7.17 Images and preimages under the Collatz mapping

We have a look at the images of the residue class 1(2) under powers of the Collatz mapping.
Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);;

gap> S0 := ResidueClass(Integers,2,1);;

gap> S1 := S0^T;

2(3)

gap> S2 := S1^T;

RCWA 121

1(3) U 8(9)

gap> S3 := S2^T;

2(3) U 4(9)

gap> S4 := S3^T;

Z \ 0(3) U 5(9)

gap> S5 := S4^T;

Z \ 0(3) U 7(9)

gap> S6 := S5^T;

Z \ 0(3)

gap> S7 := S6^T;

Z \ 0(3)

Thus the image gets stable after applying the mapping T for the 6th time. Hence T 6 maps the residue
class 1(2) surjectively onto the union of the residue classes 1(3) and 2(3), which T stabilizes setwise.
Now we would like to determine the preimages of 1(3) and 2(3) in 1(2) under T 6. The residue class
1(2) has to be the disjoint union of these sets.

Example

gap> U := Intersection(PreImage(T^6,ResidueClass(Integers,3,1)),S0);

<union of 11 residue classes (mod 64)>

gap> V := Intersection(PreImage(T^6,ResidueClass(Integers,3,2)),S0);

<union of 21 residue classes (mod 64)>

gap> AsUnionOfFewClasses(U);

[1(64), 5(64), 7(64), 9(64), 21(64), 23(64), 29(64), 31(64), 49(64),

51(64), 59(64)]

gap> AsUnionOfFewClasses(V);

[3(32), 11(32), 13(32), 15(32), 25(32), 17(64), 19(64), 27(64), 33(64),

37(64), 39(64), 41(64), 53(64), 55(64), 61(64), 63(64)]

gap> Union(U,V) = S0 and Intersection(U,V) = []; # consistency check

true

The images of the residue class 0(3) under powers of T look as follows:
Example

gap> S0 := ResidueClass(Integers,3,0);

0(3)

gap> S1 := S0^T;

0(3) U 5(9)

gap> S2 := S1^T;

0(3) U 5(9) U 7(9) U 8(27)

gap> S3 := S2^T;

<union of 20 residue classes (mod 27) (6 classes)>

gap> S4 := S3^T;

<union of 73 residue classes (mod 81)>

gap> S5 := S4^T;

Z \ 10(81) U 37(81)

gap> S6 := S5^T;

Integers

gap> S7 := S6^T;

RCWA 122

Integers

Thus every integer is the image of a multiple of 3 under T 6. This means that it would be sufficient to
prove the 3n+ 1 conjecture for multiples of 3. We can obtain the corresponding result for multiples
of 5 as follows:

Example

gap> S := [ResidueClass(Integers,5,0)];

[0(5)]

gap> for i in [1..12] do Add(S,S[i]^T); od;

gap> for s in S do View(s); Print("\n"); od;

0(5)

0(5) U 8(15)

0(5) U 4(15) U 8(15)

0(5) U 2(15) U 4(15) U 8(15) U 29(45)

<union of 73 residue classes (mod 135)>

<union of 244 residue classes (mod 405)>

<union of 784 residue classes (mod 1215)>

<union of 824 residue classes (mod 1215)>

<union of 2593 residue classes (mod 3645)>

<union of 2647 residue classes (mod 3645)>

<union of 2665 residue classes (mod 3645)>

<union of 2671 residue classes (mod 3645)>

1(3) U 2(3) U 0(15)

gap> Union(S[13],ResidueClass(Integers,3,0));

Integers

gap> List(S,Si->Float(Density(Si)));

[0.2, 0.266667, 0.333333, 0.422222, 0.540741, 0.602469, 0.645267,

0.678189, 0.711385, 0.7262, 0.731139, 0.732785, 0.733333]

Enter AssignGlobals(LoadRCWAExamples().CollatzMapping); in order to assign the global
variables defined in this section.

7.18 An extension of the Collatz mapping T to a permutation of Z2

The Collatz mapping T is surjective, but not injective:
Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);;

gap> Display(T);

Rcwa mapping of Z with modulus 2

/

| n/2 if n in 0(2)

n |-> < (3n+1)/2 if n in 1(2)

|

\

RCWA 123

gap> IsInjective(T); IsSurjective(T);

false

true

gap> PreImages(T,2);

[1, 4]

Often, dealing with rcwa permutations is easier. Indeed the Collatz mapping T can be extended
in natural ways to permutations of Z2. For example, the following permutation acts on the second
coordinate just like T :

Example

gap> Sigma_T := RcwaMapping(Integers^2, [[1,0],[0,6]],

> [[[[2,0],[0,1]],[0,0],2],

> [[[4,0],[0,3]],[2,1],2],

> [[[2,0],[0,1]],[0,0],2],

> [[[4,0],[0,3]],[2,1],2],

> [[[4,0],[0,1]],[0,0],2],

> [[[4,0],[0,3]],[2,1],2]]);

<rcwa mapping of Z^2 with modulus (1,0)Z+(0,6)Z>

gap> IsBijective(Sigma_T);

true

gap> Display(Sigma_T);

Rcwa permutation of Z^2 with modulus (1,0)Z+(0,6)Z

/

| (2m+1,(3n+1)/2) if (m,n) in (0,1)+(1,0)Z+(0,2)Z

| (m,n/2) if (m,n) in (0,0)+(1,0)Z+(0,6)Z U

(m,n) |-> < (0,2)+(1,0)Z+(0,6)Z

| (2m,n/2) if (m,n) in (0,4)+(1,0)Z+(0,6)Z

|

\

gap> Display(Sigma_T^-1);

Rcwa permutation of Z^2 with modulus (2,0)Z+(0,3)Z

/

| (m,2n) if (m,n) in (0,0)+(1,0)Z+(0,3)Z U

| (0,1)+(1,0)Z+(0,3)Z

(m,n) |-> < (m/2,2n) if (m,n) in (0,2)+(2,0)Z+(0,3)Z

| ((m-1)/2,(2n-1)/3) if (m,n) in (1,2)+(2,0)Z+(0,3)Z

|

\

Now, the 3n+1 conjecture is equivalent to the assertion that the line n = 4 is a set of representatives
for the cycles of Sigma_T on the half plane n > 0.

Let’s have a look at a part of a cycle of Sigma_T:
Example

gap> Trajectory(Sigma_T,[0,27],75);

RCWA 124

[[0, 27], [1, 41], [3, 62], [3, 31], [7, 47], [15, 71],

[31, 107], [63, 161], [127, 242], [127, 121], [255, 182],

[255, 91], [511, 137], [1023, 206], [1023, 103],

[2047, 155], [4095, 233], [8191, 350], [8191, 175],

[16383, 263], [32767, 395], [65535, 593], [131071, 890],

[131071, 445], [262143, 668], [262143, 334], [524286, 167],

[1048573, 251], [2097147, 377], [4194295, 566], [4194295, 283],

[8388591, 425], [16777183, 638], [16777183, 319],

[33554367, 479], [67108735, 719], [134217471, 1079],

[268434943, 1619], [536869887, 2429], [1073739775, 3644],

[1073739775, 1822], [2147479550, 911], [4294959101, 1367],

[8589918203, 2051], [17179836407, 3077], [34359672815, 4616],

[34359672815, 2308], [68719345630, 1154], [68719345630, 577],

[137438691261, 866], [137438691261, 433], [274877382523, 650],

[274877382523, 325], [549754765047, 488], [549754765047, 244],

[1099509530094, 122], [1099509530094, 61], [2199019060189, 92],

[2199019060189, 46], [4398038120378, 23], [8796076240757, 35],

[17592152481515, 53], [35184304963031, 80], [35184304963031, 40],

[70368609926062, 20], [70368609926062, 10], [140737219852124, 5],

[281474439704249, 8], [281474439704249, 4], [562948879408498, 2],

[562948879408498, 1], [1125897758816997, 2],

[1125897758816997, 1], [2251795517633995, 2],

[2251795517633995, 1]]

gap> Trajectory(Sigma_T^-1,[0,27],20);

[[0, 27], [0, 54], [0, 108], [0, 216], [0, 432], [0, 864],

[0, 1728], [0, 3456], [0, 6912], [0, 13824], [0, 27648],

[0, 55296], [0, 110592], [0, 221184], [0, 442368],

[0, 884736], [0, 1769472], [0, 3538944], [0, 7077888],

[0, 14155776]]

While it seems easy to make conjectures regarding the behaviour of cycles of Sigma_T, obtaining
results on it is apparently hard. We observe however that Sigma_T can be written as a product of two
permutations of Z2 whose cycles can be described easily:

Example

gap> a := RcwaMapping(Integers^2,[[1,0],[0,2]],[[[[4,0],[0,1]],[0, 0],2],

> [[[4,0],[0,1]],[2,-1],2]]);

<rcwa mapping of Z^2 with modulus (1,0)Z+(0,2)Z>

gap> b := a^-1*Sigma_T;

<rcwa permutation of Z^2 with modulus (2,0)Z+(0,3)Z>

gap> Display(a);

Rcwa permutation of Z^2 with modulus (1,0)Z+(0,2)Z

/

| (2m,n/2) if (m,n) in (0,0)+(1,0)Z+(0,2)Z

(m,n) |-> < (2m+1,(n-1)/2) if (m,n) in (0,1)+(1,0)Z+(0,2)Z

|

\

gap> Display(b);

RCWA 125

Rcwa permutation of Z^2 with modulus (2,0)Z+(0,3)Z

/

| (m,3n+2) if (m,n) in (1,0)+(2,0)Z+(0,1)Z

| (m/2,n) if (m,n) in (0,0)+(2,0)Z+(0,3)Z U

(m,n) |-> < (0,1)+(2,0)Z+(0,3)Z

| (m,n) if (m,n) in (0,2)+(2,0)Z+(0,3)Z

|

\

It is easy to see that both a and b have infinite order. The cycles of a have roughly hyperbolic shape
and run, so to speak, from (0,±∞) to (±∞,0). A given cycle contains only finitely many points both
of whose coordinates are nonzero. The fixed points of a are (0,0) and (-1,-1). We have a look at an
example of a cycle of a:

Example

gap> Trajectory(a,[1000,1000],15);

[[1000, 1000], [2000, 500], [4000, 250], [8000, 125],

[16001, 62], [32002, 31], [64005, 15], [128011, 7],

[256023, 3], [512047, 1], [1024095, 0], [2048190, 0],

[4096380, 0], [8192760, 0], [16385520, 0]]

gap> Trajectory(a^-1,[1000,1000],15);

[[1000, 1000], [500, 2000], [250, 4000], [125, 8000],

[62, 16001], [31, 32002], [15, 64005], [7, 128011],

[3, 256023], [1, 512047], [0, 1024095], [0, 2048190],

[0, 4096380], [0, 8192760], [0, 16385520]]

It is left as an easy exercise to the reader to find out how the cycles of b look like.
Enter AssignGlobals(LoadRCWAExamples().ZxZ); in order to assign the global variables de-

fined in this section.

7.19 Finite quotients of Grigorchuk groups

In this section, we show how to construct finite quotients of the two infinite periodic groups in-
troduced by Rostislav Grigorchuk in [Gri80] with the help of RCWA. The first of these, nowa-
days known as “Grigorchuk group”, is investigated in an example given on the GAP website – see
http://www.gap-system.org/Doc/Examples/grigorchuk.html. The RCWA package permits
a simpler and more elegant construction of the finite quotients of this group: The function TopElement
given on the mentioned webpage gets unnecessary, and the function SequenceElement can be sim-
plified as follows:

SequenceElement := function (r, level)

return Permutation(Product(Filtered([1..level-1],k->k mod 3 <> r),

k->ClassTransposition(2^(k-1)-1,2^(k+1),

2^k+2^(k-1)-1,2^(k+1))),

[0..2^level-1]);

http://www.gap-system.org/Doc/Examples/grigorchuk.html

RCWA 126

end;

The actual constructors for the generators are modified as follows:

a := level -> Permutation(ClassTransposition(0,2,1,2),[0..2^level-1]);

b := level -> SequenceElement(0,level);

c := level -> SequenceElement(2,level);

d := level -> SequenceElement(1,level);

All computations given on the webpage can now be done just as with the “original” construction of
the quotients of the Grigorchuk group. In the sequel, we construct finite quotients of the second group
introduced in [Gri80]:

Example

gap> FourCycle := RcwaMapping((4,5,6,7),[4..7]);

(0(4), 1(4), 2(4), 3(4))

gap> GrigorchukGroup2Generator := function (level)

> if level = 1 then return FourCycle; else

> return Restriction(FourCycle, RcwaMapping([[4,1,1]]))

> * Restriction(FourCycle, RcwaMapping([[4,3,1]]))

> * Restriction(GrigorchukGroup2Generator(level-1),

> RcwaMapping([[4,0,1]]));

> fi;

> end;;

gap> GrigorchukGroup2 := level -> Group(FourCycle,

> GrigorchukGroup2Generator(level));;

We can do similar things as shown in the example on the GAP webpage for the “first” Grigorchuk
group:

Example

gap> G := List([1..4],lev->GrigorchukGroup2(lev)); # The first 4 quotients.

[<rcwa group over Z with 2 generators>,

<rcwa group over Z with 2 generators>,

<rcwa group over Z with 2 generators>,

<rcwa group over Z with 2 generators>]

gap> H := List([1..4],lev->Action(G[lev],[0..4^lev-1])); # Isom. perm.-gps.

[Group([(1,2,3,4), (1,2,3,4)]),

Group([(1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16),

(1,5,9,13)(2,6,10,14)(4,8,12,16)]),

<permutation group with 2 generators>,

<permutation group with 2 generators>]

gap> List(H,Size);

[4, 1024, 4294967296, 1329227995784915872903807060280344576]

gap> List(last,n->Collected(Factors(n)));

[[[2, 2]], [[2, 10]], [[2, 32]], [[2, 120]]]

gap> List(H,NilpotencyClassOfGroup);

[1, 6, 14, 40]

RCWA 127

Enter AssignGlobals(LoadRCWAExamples().GrigorchukQuotients); in order to assign the
global variables defined in this section.

7.20 Forward orbits of a monoid with 2 generators

The 3n+1 conjecture asserts that the forward orbit of any positive integer under the Collatz mapping
T contains 1. In contrast, it seems likely that “most” trajectories of the two mappings

T±5 : Z−→ Z, n 7−→

{
n
2 if n even,
5n±1

2 if n odd

diverge. However we can show by means of computation that the forward orbit of any positive integer
under the action of the monoid generated by the two mappings T−5 and T+

5 indeed contains 1. First of
all, we enter the generators:

Example

gap> T5m := RcwaMapping([[1,0,2],[5,-1,2]]);;

gap> T5p := RcwaMapping([[1,0,2],[5, 1,2]]);;

We look for a number k such that for any residue class r(2k) there is a product f of k mappings T±5
whose restriction to r(2k) is given by n 7→ (an+b)/c where c > a:

Example

gap> k := 1;;

gap> repeat

> maps := List(Tuples([T5m,T5p],k),Product);

> decr := List(maps,DecreasingOn);

> decreasable := Union(decr);

> Print(k,": "); View(decreasable); Print("\n");

> k := k + 1;

> until decreasable = Integers;

1: 0(2)

2: 0(4)

3: Z \ 1(8) U 7(8)

4: 0(4) U 3(16) U 6(16) U 10(16) U 13(16)

5: Z \ 7(32) U 25(32)

6: <union of 48 residue classes (mod 64)>

7: Integers

Thus k = 7 serves our purposes. To be sure that for any positive integer n our monoid contains a
mapping f such that n f < n, we still need to check this condition for “small” n. Since in case c > a
we have (an+b)/c ≥ n if only if n ≤ b/(c−a), we only need to check those n which are not larger
than the largest coefficient br(m) occurring in any of the products under consideration:

Example

gap> maxb := Maximum(List(maps,f->Maximum(List(Coefficients(f),t->t[2]))));

25999

gap> small := Filtered([1..maxb],n->ForAll(maps,f->n^f>=n));

RCWA 128

[1, 7, 9, 11]

This means that except of 1, only for n ∈ {7,9,11} there is no product of 7 mappings T±5 which
maps n to a smaller integer. We check that also the forward orbits of these three integers contain 1 by
successively computing preimages of 1:

Example

gap> S := [1];; k := 0;;

gap> repeat

> S := Union(S,PreImage(T5m,S),PreImage(T5p,S));

> k := k+1;

> until IsSubset(S,small);

gap> k;

17

Enter AssignGlobals(LoadRCWAExamples().CollatzMapping); in order to assign the global
variables defined in this section.

7.21 The free group of rank 2 and the modular group PSL(2,Z)

The free group of rank 2 embeds into RCWA(Z) – in fact it embeds even in the subgroup which is
generated by all class transpositions. An explicit embedding can be constructed by transferring the
construction of the so-called “Schottky groups” (cf. [dlH00], page 27) from PSL(2,C) to RCWA(Z)
(we use the notation from the cited book):

Example

gap> D := AllResidueClassesModulo(4);

[0(4), 1(4), 2(4), 3(4)]

gap> gamma1 := RepresentativeAction(RCWA(Integers),

> Difference(Integers,D[1]),D[2]);;

gap> gamma2 := RepresentativeAction(RCWA(Integers),

> Difference(Integers,D[3]),D[4]);;

gap> F2 := Group(gamma1,gamma2);

<rcwa group over Z with 2 generators>

We can do some checks:
Example

gap> X1 := Union(D{[1,2]});; X2 := Union(D{[3,4]});;

gap> IsSubset(X1,X2^gamma1) and IsSubset(X1,X2^(gamma1^-1))

> and IsSubset(X2,X1^gamma2) and IsSubset(X2,X1^(gamma2^-1));

true

The generators are products of 3 class transpositions, each:

RCWA 129

Example

gap> Factorization(gamma1);

[(0(2), 1(2)), (3(4), 5(8)), (0(2), 1(8))]

gap> Factorization(gamma2);

[(0(2), 1(2)), (1(4), 7(8)), (0(2), 3(8))]

The above construction is used by IsomorphismRcwaGroup (3.1.1) to embed free groups of any
rank ≥ 2.

We give another only slightly different representation of the free group of rank 2. We verify that
it really is one by applying the so-called Table-Tennis Lemma (see e.g. [dlH00], Section II.B.) to the
infinite cyclic groups generated by the two generators and to the same two sets X1 and X2 as above:

Example

gap> r1 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);;

gap> r2 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,3,4);;

gap> F2 := Group(r1^2,r2^2);;

gap> List(GeneratorsOfGroup(F2),IsTame);

[false, false]

gap> IsSubset(X1,X2^F2.1) and IsSubset(X1,X2^(F2.1^-1))

> and IsSubset(X2,X1^F2.2) and IsSubset(X2,X1^(F2.2^-1));

true

gap> [Sources(r1),Sinks(r1),Loops(r1)]; # compare with X1

[[0(4)], [1(4)], [0(4), 1(4)]]

gap> [Sources(r2),Sinks(r2),Loops(r2)]; # compare with X2

[[2(4)], [3(4)], [2(4), 3(4)]]

gap> IsSubset(X1,Union(Sinks(r1))) and IsSubset(X1,Union(Sinks(r1^-1)))

> and IsSubset(X2,Union(Sinks(r2))) and IsSubset(X2,Union(Sinks(r2^-1)));

true

gap> IsSubset(Union(Sinks(r1)),X2^F2.1) and

> IsSubset(Union(Sinks(r1^-1)),X2^(F2.1^-1));

true

gap> IsSubset(Union(Sinks(r2)),X1^F2.2) and

> IsSubset(Union(Sinks(r2^-1)),X1^(F2.2^-1));

true

Drawing the transition graphs of r1 and r2 for modulus 4 may help to understand what is actually
done in this calculation. It is easy to see that the group generated by r1 and r2 is not free:

Example

gap> Order(r1/r2);

3

The modular group PSL(2,Z) embeds into CT(Z) as well. We give an embedding, and check that it
really is one by applying the Table Tennis Lemma as above:

Example

gap> PSL2Z :=

RCWA 130

> Group(ClassTransposition(0,3,1,3) * ClassTransposition(0,3,2,3),

> ClassTransposition(1,3,0,6) * ClassTransposition(2,3,3,6));;

gap> List(GeneratorsOfGroup(PSL2Z),Order);

[3, 2]

gap> X1 := Difference(Integers,ResidueClass(0,3));

Z \ 0(3)

gap> X2 := ResidueClass(0,3);

0(3)

gap> IsSubset(X1,X2^PSL2Z.1) and IsSubset(X1,X2^(PSL2Z.1^2));

true

gap> IsSubset(X2,X1^PSL2Z.2);

true

A slightly different representation of PSL(2,Z) can be obtained by using RCWA’s general method for
IsomorphismRcwaGroup for free products of finite groups:

Example

gap> G := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(3),

> CyclicGroup(2))));

<wild rcwa group over Z with 2 generators>

gap> List(GeneratorsOfGroup(G),Factorization);

[[(0(4), 2(4)), (1(2), 0(4))], [(0(2), 1(2))]]

Enter AssignGlobals(LoadRCWAExamples().F2_PSL2Z); in order to assign the global variables
defined in this section.

Chapter 8

The Algorithms Implemented in RCWA

This chapter lists brief descriptions of the algorithms and methods implemented in this package. These
descriptions are kept very informal and terse, and some of them provide only rudimentary information.
They are listed in alphabetical order. The word “trivial” as a description means that essentially nothing
is done except of performing I/O operations, storing or recalling one or several values or doing very
basic computations, and “straightforward” means that no sophisticated algorithm is used. Note that
“trivial” and “straightforward” are to be read as mathematically trivial respectively straightforward,
and that the code of a function or method attributed in this way can still be reasonably long and
complicated. Longer and better descriptions of some of the algorithms and methods can be found
in [Koh08].

ActionOnRespectedPartition(G)

“Straightforward” after having computed a respected partition by RespectedPartition.

AllElementsOfCTZWithGivenModulus(m)

This function first determines a list of all unordered partitions P of Z into m residue classes.
Then for any such partition P it runs a loop over the elements of the symmetric group of
degree m . For any σ ∈ Sm and any partition P it constructs the element of CT(Z) with modulus
dividing m which maps the ordered partition {0(m),1(m), . . . ,m−1(m)} to the ordered partition
obtained from P by permuting the residue classes with σ . Finally it discards the elements
whose modulus is a proper divisor of m , and returns the “rest”.

Ball(G,g,r)

“Straightforward”.

Ball(G,p,r,act)

“Straightforward”.

ClassPairs(m)

Runs a loop over all 4-tuples of nonnegative integers less than m , and filters by congruence
criteria and ordering of the entries.

ClassReflection(r,m)

“Trivial”.

ClassRotation(r,m,u)

“Trivial”.

131

RCWA 132

ClassShift(r,m)

“Trivial”.

ClassTransposition(r1,m1,r2,m2)

“Trivial”.

ClassWiseOrderPreservingOn(f), etc.
Forms the union of the residue classes modulo the modulus of f in whose corresponding coef-
ficient triple the first entry is positive, zero or negative, respectively.

Coefficients(f)

“Trivial”.

CommonRightInverse(l,r)

See RightInverse.

CT(R)

Attributes and properties are set according to [Koh10].

CycleRepresentativesAndLengths(g,S)

“Straightforward”.

CyclesOnFiniteOrbit(G,g,n)

“Straightforward”.

DecreasingOn(f)

Forms the union of the residue classes which are determined by the coefficients as indicated.

DerivedSubgroup(G)

No genuine method – GAP Library methods already work for tame groups.

Determinant(g)

Evaluation of the given expression. For the mathematical meaning (epimorphism!), see Theo-
rem 2.11.9 in [Koh05].

DifferencesList(l)

“Trivial”.

DirectProduct(G1,G2, ...)

Restricts the groups G1 , G2 , ... to disjoint residue classes. See Restriction and Corol-
lary 2.3.3 in [Koh05].

Display(f)

“Trivial”.

DistanceToNextSmallerPointInOrbit(G,n)

“Straightforward” – computes balls of radius r about n for r = 1,2, . . . until a point smaller than
n is found.

Divisor(f)

Lcm of coefficients, as indicated.

RCWA 133

DrawGrid(U,range_y,range_x,filename)

“Straightforward”.

DrawOrbitPicture

Compute spheres of radius 1, . . . ,r around the given point(s). Choose the origin either in the
lower left corner of the picture (if all points lie in the first quadrant) or in the middle of the
picture (if they don’t). Mark points of the ball with black pixels in case of a monochrome
picture. Choose colors from the given palette depending on the distance from the starting points
in case of a colored picture.

EpimorphismFromFpGroup(G,r)

Computes orders of elements in the ball of radius r about 1 in G , and uses the corresponding
relations if they affect the abelian invariants of G , G' , G� , etc..

Exponent(G)

Check whether G is finite. If it is, then use the GAP Library method, applied to
Image(IsomorphismPermGroup(G)). Check whether G is tame. If yes, return infinity.
If not, run a loop over G until finding an element of infinite order. Once one is found, return
infinity.

The final loop to find a non-torsion element can be left away under the assumption that any
finitely generated wild rcwa group has a wild element. It looks likely that this holds, but cur-
rently the author does not know a proof.

ExtRepOfObj(f)

“Trivial”.

FactorizationIntoCSCRCT(g), Factorization(g)

The method used here is rather sophisticated, and will likely some time be published elsewhere.
At the moment termination is not guaranteed, but in case of termination the result is certain. The
strategy is roughly first to make the mapping class-wise order-preserving and balanced, and then
to remove all prime factors from multiplier and divisor one after the other in decreasing order by
dividing by appropriate class transpositions. The remaining integral mapping can be factored in
a similar way as a permutation of a finite set can be factored into transpositions.

FactorizationOnConnectedComponents(f,m)

Calls GRAPE to get the connected components of the transition graph, and then computes a
partition of the suitably “blown up” coefficient list corresponding to the connected components.

FixedPointsOfAffinePartialMappings(f)

“Straightforward”.

FixedResidueClasses(g,maxmod), FixedResidueClasses(G,maxmod)

Runs a loop over all moduli m ≤ maxmod and all residues r modulo these moduli, and selects
those residue classes r(m) which are mapped to itself by g , respectively, by all generators of G .

FloatQuotientsList(l)

“Trivial”.

GluckTaylorInvariant(a)

Evaluation of the given expression.

RCWA 134

GroupByResidueClasses(classes)

Finds all pairs of residue classes in the list classes which are disjoint, forms the corresponding
class transpositions and returns the group generated by them.

GuessedDivergence(f)

Numerical computation of the limit of some series, which seems to converge “often”. Caution!!!

Image(f), Image(f,S)

“Straightforward” if one can compute images of residue classes under affine mappings and unite
and intersect residue classes (Chinese Remainder Theorem). See Lemma 1.2.1 in [Koh05].

ImageDensity(f)

Evaluation of the given expression.

g in G (membership test for rcwa groups)
Test whether the mapping g or its inverse is in the list of generators of G . If it is, return true.
Test whether its prime set is a subset of the prime set of G . If not, return false. Test whether
the multiplier or the divisor of g has a prime factor which does not divide the multiplier of G .
If yes, return false. Test if G is class-wise order-preserving, and g is not. If so, return false.
Test if the sign of g is -1 and all generators of G have sign 1. If yes, return false. Test if G is
class-wise order-preserving, all generators of G have determinant 0 and g has determinant 6= 0.
If yes, return false. Test whether the support of g is a subset of the support of G . If not, return
false. Test whether G fixes the nonnegative integers setwise, but g does not. If yes, return
false.

If G is tame, proceed as follows: Test whether the modulus of g divides the modulus of G .
If not, return false. Test whether G is finite and g has infinite order. If so, return false.
Test whether g is tame. If not, return false. Compute a respected partition P of G and the
finite permutation group H induced by G on it (see RespectedPartition). Check whether g
permutes P. If not, return false. Let h be the permutation induced by g on P. Check whether
h lies in H. If not, return false. Compute an element g1 of G which acts on P like g . For this
purpose, factor h into generators of H using PreImagesRepresentative, and compute the
corresponding product of generators of G . Let k := g/g1. The mapping k is always integral.
Compute the kernel K of the action of G on P using KernelOfActionOnRespectedPartition.
Check whether k lies in K. This is done using the package Polycyclic [EHN13], and uses an
isomorphism from a supergroup of K which is isomorphic to the |P|-fold direct product of the
infinite dihedral group and which always contains k to a polycyclically presented group. If k
lies in K, return true, otherwise return false.

If G is not tame, proceed as follows: Look for finite orbits of G . If some are found, test whether
g acts on them, and whether the induced permutations lie in the permutation groups induced
by G . If for one of the examined orbits one of the latter two questions has a negative answer,
then return false. Look for a positive integer m such that g does not leave a partition of Z into
unions of residue classes (mod m) invariant which is fixed by G . If successful, return false.
If not, try to factor g into generators of G using PreImagesRepresentative. If successful,
return true. If g is in G , this terminates after a finite number of steps. Both run time and
memory requirements are exponential in the word length. If g is not in G at this stage, the
method runs into an infinite loop.

RCWA 135

f in M (membership test for rcwa monoids)
Test whether the mapping f is in the list of generators of G . If it is, return true. Test whether
the multiplier of f is zero, but all generators of M have nonzero multiplier. If yes, return false.
Test if neither f nor any generator of M has multiplier zero. If so, check whether the prime set
of f is a subset of the prime set of M , and whether the set of prime factors of the multiplier of f
is a subset of the union of the sets of prime factors of the multipliers of the generators of M . If
one of these is not the case, return false. Check whether the set of prime factors of the divisor
of f is a subset of the union of the sets of prime factors of the divisors of the generators of M . If
not, return false. If the underlying ring is Z or a semilocalization thereof, then check whether
f is not class-wise order-preserving, but M is. If so, return false.

If f is not injective, but all generators of M are, then return false. If f is not surjective, but all
generators of M are, then return false. If the support of f is not a subset of the support of M ,
then return false. If f is not sign-preserving, but M is, then return false. Check whether M is
tame. If so, then return false provided that one of the following three conditions hold: 1. The
modulus of f does not divide the modulus of M . 2. f is not tame. 3. M is finite, and f is bijective
and has infinite order. If membership has still not been decided, use ShortOrbits to look for
finite orbits of M , and check whether f fixes all of them setwise. If a finite orbit is found which
f does not map to itself, then return false.

Finally compute balls of increasing radius around 1 until f is found to lie in one of them. If that
happens, return true. If f is an element of M , this will eventually terminate, but if at this stage
f is not an element of M , this will run into an infinite loop.

point in orbit (membership test for orbits)
Uses the equality test for orbits: The orbit equality test computes balls of increasing radius
around the orbit representatives until they intersect non-trivially. Once they do so, it returns
true. If it finds that one or both of the orbits are finite, it makes use of that information,
and returns false if appropriate. In between, i.e. after having computed balls to a certain
extent depending on the properties of the group, it chooses a suitable modulus m and computes
orbits (modulo m). If the representatives of the orbits to be compared belong to different orbits
(mod m), it returns false. If this is not the case although the orbits are different, the equality
test runs into an infinite loop.

IncreasingOn(f)

Forms the union of the residue classes which are determined by the coefficients as indicated.

Index(G,H)

In general, i.e. if the underlying ring is not Z, proceed as follows: If both groups G and H

are finite, return the quotient of their orders. If G is infinite, but H is finite, return infinity.
Otherwise return the number of right cosets of H in G , computed by the GAP Library function
RightCosets.

If the underlying ring is Z, do additionally the following before attempting to compute the list of
right cosets: If the group G is class-wise order-preserving, check whether one of its generators
has nonzero determinant, and whether all generators of H have determinant zero. If so, then
return infinity. Check whether H is tame, but G is not. If so, then return infinity. If G
is tame, then check whether the rank of the largest free abelian subgroup of the kernel of the
action of G on a respected partition is higher than the corresponding rank for H . For this check,
use RankOfKernelOfActionOnRespectedPartition. If it is, then return infinity.

RCWA 136

Induction(g,f)

Computes f * g * RightInverse(f).

Induction(G,f)

Gets a set of generators by applying Induction(g,f) to the generators g of G .

InjectiveAsMappingFrom(f)

The function starts with the entire source of f as “preimage” pre and the empty set as “im-
age” im. It loops over the residue classes (mod Mod(f)). For any such residue class cl the
following is done: Firstly, the image of cl under f is added to im. Secondly, the intersection of
the preimage of the intersection of the image of cl under f and im under f and cl is subtracted
from pre.

IntegralConjugate(f), IntegralConjugate(G)

Uses the algorithm described in the proof of Theorem 2.5.14 in [Koh05].

IntegralizingConjugator(f), IntegralizingConjugator(G)

Uses the algorithm described in the proof of Theorem 2.5.14 in [Koh05].

Inverse(f)

Essentially inversion of affine mappings. See Lemma 1.3.1, Part (b) in [Koh05].

IsBalanced(f)

Checks whether the sets of prime factors of the multiplier and the divisor of f are the same.

IsBijective(f)

“Trivial”, respectively, see IsInjective and IsSurjective.

IsClassReflection(g)

Computes the support of g , and compares g with the corresponding class reflection.

IsClassRotation(g)

Computes the support of g , extracts the possible rotation factor from the coefficients and com-
pares g with the corresponding class rotation.

IsClassShift(g)

Computes the support of g , and compares g with the corresponding class shift.

IsClassTransposition(g), IsGeneralizedClassTransposition(g)

Computes the support of g , writes it as a disjoint union of two residue classes and compares g
with the class transposition which interchanges them.

IsClassWiseOrderPreserving(f), IsClassWiseTranslating(f)

“Trivial”.

IsConjugate(RCWA(Integers),f,g)

Test whether f and g have the same order, and whether either both or none of them is tame. If
not, return false.

If the mappings are wild, use ShortCycles to search for finite cycles not belonging to an
infinite series, until their numbers for a particular length differ. This may run into an infinite
loop. If it terminates, return false.

RCWA 137

If the mappings are tame, use the method described in the proof of Theorem 2.5.14 in [Koh05]
to construct integral conjugates of f and g . Then essentially use the algorithm described in
the proof of Theorem 2.6.7 in [Koh05] to compute “standard representatives” of the conjugacy
classes which the integral conjugates of f and g belong to. Finally compare these standard
representatives, and return true if they are equal and false if not.

IsInjective(f)

See Image.

IsIntegral(f)

“Trivial”.

IsNaturalCT(G), IsNaturalRCWA(G)

Only checks a set flag.

IsomorphismMatrixGroup(G)

Uses the algorithm described in the proof of Theorem 2.6.3 in [Koh05].

IsomorphismPermGroup(G)

If the group G is finite and class-wise order-preserving, use ActionOnRespectedPartition.
If G is finite, but not class-wise order-preserving, compute the action on the respected partition
which is obtained by splitting any residue class r(m) in RespectedPartition(G) into three
residue classes r(3m),r+m(3m),r+2m(3m). If G is infinite, there is no isomorphism to a finite
permutation group, thus return fail.

IsomorphismRcwaGroup(G)

The method for finite groups uses RcwaMapping, Part (d).

The method for free products of finite groups uses the Table-Tennis Lemma (which is also
known as Ping-Pong Lemma, cf. e.g. Section II.B. in [dlH00]). It uses regular permutation rep-
resentations of the factors Gr (r = 0, . . . ,m− 1) of the free product on residue classes modulo
nr := |Gr|. The basic idea is that since point stabilizers in regular permutation groups are trivial,
all non-identity elements map any of the permuted residue classes into their complements. To
get into a situation where the Table-Tennis Lemma is applicable, the method computes conju-
gates of the images of the mentioned permutation representations under rcwa permutations σr

which satisfy 0(nr)
σr = Z\ r(m).

The method for free groups uses an adaptation of the construction given on page 27 in [dlH00]
from PSL(2,C) to RCWA(Z). As an equivalent for the closed discs used there, the method takes
the residue classes modulo two times the rank of the free group.

IsOne(f)

“Trivial”.

IsPerfect(G)

If the group G is trivial, then return true. Otherwise if it is abelian, then return false.

If the underlying ring is Z, then do the following: If one of the generators of G has sign -1,
then return false. If G is class-wise order-preserving and one of the generators has nonzero
determinant, then return false.

RCWA 138

If G is wild, and perfectness has not been decided so far, then give up. If G is finite, then
check the image of IsomorphismPermGroup(G) for perfectness, and return true or false
accordingly.

If the group G is tame and if it acts transitively on its stored respected parti-
tion, then return true or false depending on whether the finite permutation group
ActionOnRespectedPartition(G) is perfect or not. If G does not act transitively on its
stored respected partition, then give up.

IsPrimeSwitch(g)

Checks whether the multiplier of g is an odd prime, and compares g with the corresponding
prime switch.

IsSignPreserving(f)

If f is not class-wise order-preserving, then return false. Otherwise let c ≥ 1 be greater
than or equal to the maximum of the absolute values of the coefficients br(m) of the affine
partial mappings of f , and check whether the minimum of the image of {0, . . . ,c} under f is
nonnegative and whether the maximum of the image of {−c, . . . ,−1} under f is negative. If
both is the case, then return true, otherwise return false.

IsSolvable(G)

If G is abelian, then return true. If G is tame, then return true or false depending on whether
ActionOnRespectedPartition(G) is solvable or not. If G is wild, then give up.

IsSubset(G,H) (checking for a subgroup relation)
Check whether the set of stored generators of H is a subset of the set of stored generators of G .
If so, return true. Check whether the prime set of H is a subset of the prime set of G . If not,
return false. Check whether the support of H is a subset of the support of G . If not, return
false. Check whether G is tame, but H is wild. If so, return false.

If G and H are both tame, then proceed as follows: If the multiplier of H does not divide
the multiplier of G , then return false. If H does not respect the stored respected parti-
tion of G , then return false. Check whether the finite permutation group induced by H on
RespectedPartition(G) is a subgroup of ActionOnRespectedPartition(G). If yes, re-
turn true. Check whether the order of H is greater than the order of G . If so, return false.

Finally use the membership test to check whether all generators of H lie in G , and return true

or false accordingly.

IsSurjective(f)

See Image.

IsTame(G)

Checks whether the modulus of the group is nonzero.

IsTame(f)

Application of the criteria given in Corollary 2.5.10 and 2.5.12 and Theorem A.8 and A.11
in [Koh05], as well as of the criteria given in [Koh07a]. The criterion “surjective, but not
injective means wild” (Theorem A.8 in [Koh05]) is the subject of [Koh07b]. The package
GRAPE is needed for the application of the criterion which says that an rcwa permutation is
wild if a transition graph has a weakly-connected component which is not strongly-connected
(cf. Theorem A.11 in [Koh05]).

RCWA 139

IsTransitive(G,Integers)

Look for finite orbits, using ShortOrbits on a couple of intervals. If a finite orbit is found,
return false. Test if G is finite. If yes, return false.

Search for an element g and a residue class r(m) such that the restriction of g to r(m) is given
by n 7→ n+m. Then the cyclic group generated by g acts transitively on r(m). The element g
is searched among the generators of G , its powers, its commutators, powers of its commutators
and products of few different generators. The search for such an element may run into an infinite
loop, as there is no guarantee that the group has a suitable element.

If suitable g and r(m) are found, proceed as follows:

Put S := r(m). Put S := S∪Sg for all generators g of G , and repeat this until S remains constant.
This may run into an infinite loop.

If it terminates: If S = Z, return true, otherwise return false.

IsTransitiveOnNonnegativeIntegersInSupport(G)

Computes balls about 1 with successively increasing radii, and checks whether the union of the
sets where the elements of these balls are decreasing or shifting down equals the support of G .
If a positive answer is found, transitivity on “small” points (nonnegative integers less than an
explicit bound) is verified.

IsZero(f)

“Trivial”.

KernelOfActionOnRespectedPartition(G)

First determine the abelian invariants of the kernel K. For this, compute sufficiently many quo-
tients of orders of permutation groups induced by G on refinements of the stored respected
partition P by the order of the permutation group induced by G on P itself. Then use a random
walk through the group G . Compute powers of elements encountered along the way which fix P.
Translate these kernel elements into elements of a polycyclically presented group isomorphic to
the |P|-fold direct product of the infinite dihedral group (K certainly embeds into this group).
Use Polycyclic [EHN13] to collect independent “nice” generators of K. Proceed until the per-
mutation groups induced by K on the refined respected partitions all equal the initially stored
quotients.

LargestSourcesOfAffineMappings(f)

Forms unions of residue classes modulo the modulus of the mapping, whose corresponding
coefficient triples are equal.

LaTeXStringRcwaMapping(f), LaTeXAndXDVI(f)

Collects residue classes those corresponding coefficient triples are equal.

LikelyContractionCentre(f,maxn,bound)

Computes trajectories with starting values from a given interval, until a cycle is reached. Aborts
if the trajectory exceeds the prescribed bound. Form the union of the detected cycles.

LoadDatabaseOf...(), LoadRCWAExamples()

“Trivial”. – These functions do nothing more than reading in certain files.

LocalizedRcwaMapping(f,p)

“Trivial”.

RCWA 140

Log2HTML(logfilename)

Straightforward string operations.

Loops(f)

Runs over the residue classes modulo the modulus of f , and selects those of them which f does
not map to themselves, but which intersect non-trivially with their images under f .

MaximalShift(f)

“Trivial”.

MergerExtension(G,points,point)

As described in MergerExtension (3.1.4).

Mirrored(g), Mirrored(G)

Conjugates with n 7→ −n−1, as indicated in the definition.

mKnot(m)

“Straightforward”, following the definition given in [Kel99].

Modulus(G)

Searches for a wild element in the group. If unsuccessful, tries to construct a respected partition
(see RespectedPartition).

Modulus(f)

“Trivial”.

MovedPoints(G)

Needs only forming unions of residue classes and determining fixed points of affine mappings.

Multiplier(f)

Lcm of coefficients, as indicated.

Multpk(f,p,k)

Forms the union of the residue classes modulo the modulus of the mapping, which are deter-
mined by the given divisibility criteria for the coefficients of the corresponding affine mapping.

NrClassPairs(m)

Relatively straightforward. – Practical for values of m ranging up into the hundreds and corre-
sponding counts of 10^9 and more.

NrConjugacyClassesOfCTZOfOrder(ord),
Evaluation of the expression Length(Filtered(Combinations(DivisorsInt(ord)), l

-> l <> [] and Lcm(l) = ord)).

NrConjugacyClassesOfRCWAZOfOrder(ord)

The class numbers are taken from Corollary 2.7.1 in [Koh05].

ObjByExtRep(fam,l)

“Trivial”.

One(f), One(G),
“Trivial”.

RCWA 141

Orbit(G,pnt,gens,acts,act)

Check if the orbit has length less than a certain bound. If so, then return it as a list. Otherwise
test whether the group G is tame or wild.

If G is tame, then test whether G is finite. If yes, then compute the orbit by the GAP Library
method. Otherwise proceed as follows: Compute a respected partition P of G . Use P to find
a residue class r(m) which is a subset of the orbit to be computed. In general, r(m) will not be
one of the residue classes in P , but a subset of one of them. Put Ω := r(m). Unite the set Ω

with its images under all the generators of G and their inverses. Repeat that until Ω does not
change any more. Return Ω.

If G is wild, then return an orbit object which stores the group G , the representative rep and the
action act .

OrbitsModulo(f,m)

Uses GRAPE to compute the connected components of the transition graph.

OrbitsModulo(G,m)

“Straightforward”.

Order(f)

Test for IsTame. If the mapping is not tame, then return infinity. Otherwise use Corol-
lary 2.5.10 in [Koh05].

PermutationOpNC(sigma,P,act)

Several different methods for different types of arguments, which either provide straightforward
optimizations via computing with coefficients directly, or just delegate to PermutationOp.

PreImage(f,S)

See Image.

PreImagesRepresentative(phi,g), PreImagesRepresentatives(phi,g)

As described in the documentation of these methods. The underlying idea to successively com-
pute two balls around 1 and g until they intersect non-trivially is standard in computational
group theory. For rcwa groups it would mean wasting both memory and run time to actually
compute group elements. Thus only images of tuples of points are computed and stored.

PrimeSet(f), PrimeSet(G)

“Straightforward”.

PrimeSwitch(p)

Multiplication of rcwa mappings as indicated.

Print(f)

“Trivial”.

f*g

Essentially composition of affine mappings. See Lemma 1.3.1, Part (a) in [Koh05].

ProjectionsToCoordinates(f)

Straightforward coefficient operations.

RCWA 142

ProjectionsToInvariantUnionsOfResidueClasses(G,m)

Use OrbitsModulo to determine the supports of the images of the epimorphisms to be deter-
mined, and use RestrictedPerm to compute the images of the generators of G under these
epimorphisms.

QuotientsList(l)

“Trivial”.

Random(RCWA(Integers))

Computes a product of “randomly” chosen class shifts, class reflections and class transpositions.
This seems to be suitable for generating reasonably good examples.

RankOfKernelOfActionOnRespectedPartition(G)

Performs basically the first part of the computations done by
KernelOfActionOnRespectedPartition.

Rcwa(R)

“Trivial”. – Attributes and properties set can be derived easily or hold by definition.

RCWA(R)

Attributes and properties are set according to Theorem 2.1.1, Theorem 2.1.2, Corollary 2.1.6
and Theorem 2.12.8 in [Koh05].

RCWABuildManual()

Consists of a call to a function from the GAPDoc package.

RcwaGroupByPermGroup(G)

Uses RcwaMapping, Part (d).

RCWAInfo(n)

“Trivial”.

RcwaMapping

(a)-(c): “trivial”, (d): n^perm - n for determining the coefficients, (e): “affine mappings by
values at two given points”, (f) and (g): “trivial”, (h) and (i): correspond to Lemma 2.1.4
in [Koh05], (j): uses a simple parser for the permitted expressions.

RCWATestAll(), RCWATestInstall()

Just read in files running / containing the tests.

RCWATestExamples()

Runs the example tester from the GAPDoc package.

RepresentativeAction(G,src,dest,act), RepresentativeActionPreImage

As described in the documentation of these methods. The underlying idea to successively com-
pute two balls around src and dest until they intersect non-trivially is standard in computa-
tional group theory. Words standing for products of generators of G are stored for every image
of src or dest .

RepresentativeAction(RCWA(Integers),P1,P2)

Arbitrary mapping: see Lemma 2.1.4 in [Koh05]. Tame mapping: see proof of Theorem 2.8.9

RCWA 143

in [Koh05]. The former is almost trivial, while the latter is a bit complicated and takes usually
also much more time.

RepresentativeAction(RCWA(Integers),f,g)

The algorithm used by IsConjugate constructs actually also an element x such that f^x = g .

RespectedPartition(f), RespectedPartition(G)

There are presently two sophisticated algorithms implemented for finding respected partitions.
One of them has evolved from the algorithm described in the proof of Theorem 2.5.8 in [Koh05].
The other one starts with the coarsest partition of the base ring such that every generator of G
is affine on every part. This partition is then refined successively until a respected partition is
obtained. The refinement step is basically as follows: Take the images of the partition under
all generators of G . This way one obtains as many further partitions of the base ring as there
are generators of G . Then the “new” partition is the coarsest common refinement of all these
partitions.

RespectsPartition(G,P)

“Straightforward”.

RestrictedBall(G,g,r,modulusbound)

“Straightforward”.

RestrictedPerm(g,S)

“Straightforward”.

Restriction(g,f)

Computes the action of RightInverse(f) * g * f on the image of f .

Restriction(G,f)

Gets a set of generators by applying Restriction(g,f) to the generators g of G .

RightInverse(f)

“Straightforward” if one knows how to compute images of residue classes under affine map-
pings, and how to compute inverses of affine mappings.

Root(f,k)

If f is bijective, class-wise order-preserving and has finite order:

Find a conjugate of f which is a product of class transpositions. Slice cycles ∏
l
i=2 τr1(m1),ri(mi)

of f a respected partition P into cycles ∏
l
i=1 ∏

k−1
j=0 τr1(km1),ri+ jmi(kmi) of the k -fold length on the

refined partition which one gets from P by decomposing any ri(mi) ∈P into residue classes
(mod kmi). Finally conjugate the resulting permutation back.

Other cases seem to be more difficult and are currently not covered.

RotationFactor(g)

“Trivial”.

RunDemonstration(filename)

“Trivial” – only I/O operations.

SemilocalizedRcwaMapping(f,pi)

“Trivial”.

RCWA 144

ShiftsDownOn(f), ShiftsUpOn(f)

Straightforward coefficient- and residue class operations.

ShortCycles(g,maxlng)

Looks for fixed points of affine partial mappings of powers of g .

ShortCycles(g,S,maxlng), ShortCycles(g,S,maxlng,maxn)

“Straightforward”.

ShortOrbits(G,S,maxlng), ShortOrbits(G,S,maxlng,maxn)

“Straightforward”.

ShortResidueClassCycles(g,modulusbound,maxlng)

Different methods – see source code in pkg/rcwa/lib/rcwamap.gi.

ShortResidueClassOrbits(g,modulusbound,maxlng)

Different methods – see source code in pkg/rcwa/lib/rcwagrp.gi.

Sign(g)

Evaluation of the given expression. For the mathematical meaning (epimorphism!), see Theo-
rem 2.12.8 in [Koh05].

Sinks(f)

Computes the strongly connected components of the transition graph by the function
STRONGLY_CONNECTED_COMPONENTS_DIGRAPH, and selects those which are proper subsets of
their preimages and proper supersets of their images under f .

Size(G) (order of an rcwa group)
Test whether one of the generators of the group G has infinite order. If so, return
infinity. Test whether the group G is tame. If not, return infinity. Test whether
RankOfKernelOfActionOnRespectedPartition(G) is nonzero. If so, return infinity.
Otherwise if G is class-wise order-preserving, return the size of the permutation group induced
on the stored respected partition. If G is not class-wise order-preserving, return the size of the
permutation group induced on the refinement of the stored respected partition which is obtained
by splitting each residue class into three residue classes with equal moduli.

Size(M) (order of an rcwa monoid)
Check whether M is in fact an rcwa group. If so, use the method for rcwa groups instead. Check
whether one of the generators of M is surjective, but not injective. If so, return infinity.
Check whether for all generators f of M , the image of the union of the loops of f under f is
finite. If not, return infinity. Check whether one of the generators of M is bijective and has
infinite order. If so, return infinity. Check whether one of the generators of M is wild. If so,
return infinity. Apply the above criteria to the elements of the ball of radius 2 around 1, and
return infinity if appropriate. Finally attempt to compute the list of elements of M . If this is
successful, return the length of the resulting list.

SmallGeneratingSet(G)

Eliminates generators g which can be found to be redundant easily, i.e. by checking whether
the balls about 1 and g of some small radius r in the group generated by all generators of G
except for g intersect nontrivially.

RCWA 145

Sources(f)

Computes the strongly connected components of the transition graph by the function
STRONGLY_CONNECTED_COMPONENTS_DIGRAPH, and selects those which are proper supersets
of their preimages and proper subsets of their images under f .

SparseRep(f), StandardRep(f)

Straightforward coefficient operations.

SplittedClassTransposition(ct,k)

“Straightforward”.

StructureDescription(G)

This method uses a combination of techniques to obtain some basic information on the struc-
ture of an rcwa group. The returned description reflects the way the group has been built
(DirectProduct, WreathProduct, etc.).

f+g

Pointwise addition of affine mappings.

String(obj)

“Trivial”.

Support(G)

“Straightforward”.

Trajectory(f,n,...)

Iterated application of an rcwa mapping. In the methods computing “accumulated coefficients”,
additionally composition of affine mappings.

TransitionGraph(f,m)

“Straightforward” – just check a sufficiently long interval.

TransitionMatrix(f,m)

Evaluation of the given expression.

TransposedClasses(g)

“Trivial”.

View(f)

“Trivial”.

WreathProduct(G,P)

Uses DirectProduct to embed the NrMovedPoints(P)th direct power of G , and
RcwaMapping, Part (d) to embed the finite permutation group P .

WreathProduct(G,Z)

Restricts G to the residue class 3(4), and encodes the generator of Z as τ0(2),1(2) · τ0(2),1(4). It is
used that the images of 3(4) under powers of this mapping are pairwise disjoint residue classes.

Zero(f)

“Trivial”.

Chapter 9

Installation and Auxiliary Functions

9.1 Requirements

This version of RCWA needs at least GAP 4.8.2, ResClasses 4.4.0, GRAPE 4.7 [Soi16], Poly-
cyclic 2.11 [EHN13], FR 2.2.1 [Bar15], GAPDoc 1.5.1 [LN12], and Utils 0.38 [GKW16]. With pos-
sible exception of the most recent version of ResClasses, all needed packages are already present
in an up-to-date standard GAP installation. The RCWA package is completely written in the GAP
language and can be used on all platforms for which GAP is available.

9.2 Installation

Like any other GAP package, RCWA is usually installed in the pkg subdirectory of the GAP distri-
bution. This is accomplished by extracting the distribution file in this directory. If you have done this,
you can load the package as usual via LoadPackage("rcwa");.

9.3 Building the manual

The following routine is a development tool. As all files it generates are included in the distribution
file anyway, users will not need it.

9.3.1 RCWABuildManual

. RCWABuildManual() (function)

Returns: nothing.
This function builds the manual of the RCWA package in the file formats LATEX, PDF, HTML and

ASCII text. This is accomplished using the GAPDoc package by Frank Lübeck and Max Neunhöffer.
Building the manual is possible only on UNIX-type systems and requires PDFLATEX.

9.4 The testing routines

9.4.1 RCWATestInstall

. RCWATestInstall() (function)

Returns: true if no errors were found, and false otherwise.

146

RCWA 147

Performs a nontrivial computation to check whether an installation of RCWA appears to work.
Errors, i.e. differences to the correct results of the test computation, are reported. The processed test
file is pkg/rcwa/tst/testinstall.tst.

9.4.2 RCWATestAll

. RCWATestAll() (function)

Returns: true if no errors were found, and false otherwise.
Runs the full test suite of the RCWA package. Any differences to the supposed results of the test

computations are reported. The processed test files are in the directory pkg/rcwa/tst.
Please note that the test suite is a tool for developing. The tests are deliberately very volatile to

allow to spot possible problems of any kind also in other packages or in the GAP Library. For this
reason you may see reports of differences which simply reflect improved methods in other packages
or in the GAP Library (for example an object may already know more of its attributes or properties
than it is expected to, or an object may be represented in a better way), or which are caused by changes
of the way certain objects are printed, and which are therefore harmless. However if the correct and
the actual output look different mathematically or if you see error messages or if GAP crashes, then
something went wrong. Also, reports about significantly increased run times of individual commands
as well as run times of test files which are much longer than the predicted times shown may indicate
a problem.

9.4.3 RCWATestExamples

. RCWATestExamples() (function)

Returns: nothing.
Runs all examples in the manual of the RCWA package, and reports any differences between the

actual output and the output printed in the manual.

9.5 The Info class of the package

9.5.1 InfoRCWA

. InfoRCWA (info class)

This is the Info class of the RCWA package. See section Info Functions in the GAP Reference
Manual for a description of the Info mechanism. For convenience: RCWAInfo(n) is a shorthand for
SetInfoLevel(InfoRCWA,n).

References

[And00] P. Andaloro. On total stopping times under 3x+1 iteration. Fibonacci Quarterly, 38:73–
78, 2000. 106

[Bar15] L. Bartholdi. FR – Computations with functionally recursive groups. Version 2.2.1, 2015.
GAP package, http://www.gap-system.org/Packages/fr.html. 146

[dlH00] P. de la Harpe. Topics in Geometric Group Theory. Chicago Lectures in Mathematics,
2000. 31, 128, 129, 137

[EHN13] B. Eick, M. Horn, and W. Nickel. Polycyclic – Computation with polycyclic groups
(Version 2.11), 2013. GAP package, http://www.gap-system.org/Packages/

polycyclic.html. 55, 134, 139, 146

[GKW16] S. Gutsche, S. Kohl, and C. Wensley. Utils - Utility functions in GAP (Version 0.38), 2016.
GAP package, http://www.gap-system.org/Packages/utils.html. 146

[Gri80] R. I. Grigorchuk. Burnside’s problem on periodic groups. Functional Anal. Appl., 14:41–
43, 1980. 125, 126

[GT02] D. Gluck and B. D. Taylor. A new statistic for the 3x+1 problem. Proc. Amer. Math. Soc.,
130(5):1293–1301, 2002. 27, 28

[HEO05] D. F. Holt, B. Eick, and E. A. O’Brien. Handbook of Computational Group Theory. Dis-
crete Mathematics and its Applications (Boca Raton). Chapman & Hall / CRC, Boca Ra-
ton, FL, 2005. 5

[Hig74] G. Higman. Finitely Presented Infinite Simple Groups. Notes on Pure Mathematics. De-
partment of Pure Mathematics, Australian National University, Canberra, 1974. 77, 78

[Kel99] T. P. Keller. Finite cycles of certain periodically linear permutations. Missouri J. Math.
Sci., 11(3):152–157, 1999. 22, 140

[Koh05] S. Kohl. Restklassenweise affine Gruppen. Dissertation, Universität Stuttgart, 2005.
http://d-nb.info/977164071. 19, 20, 36, 52, 54, 55, 132, 134, 136, 137, 138, 140,
141, 142, 143, 144

[Koh07a] S. Kohl. Graph theoretical criteria for the wildness of residue-class-wise affine permuta-
tions, 2007. Preprint (short note), http://www.gap-system.org/DevelopersPages/
StefanKohl/preprints/graphcrit.pdf. 138

[Koh07b] S. Kohl. Wildness of iteration of certain residue-class-wise affine mappings. Adv. in Appl.
Math., 39(3):322–328, 2007. DOI: 10.1016/j.aam.2006.08.003. 138

148

http://www.gap-system.org/Packages/fr.html
http://www.gap-system.org/Packages/polycyclic.html
http://www.gap-system.org/Packages/polycyclic.html
http://www.gap-system.org/Packages/utils.html
http://d-nb.info/977164071
http://www.gap-system.org/DevelopersPages/StefanKohl/preprints/graphcrit.pdf
http://www.gap-system.org/DevelopersPages/StefanKohl/preprints/graphcrit.pdf

RCWA 149

[Koh08] S. Kohl. Algorithms for a class of infinite permutation groups. J. Symb. Comput.,
43(8):545–581, 2008. DOI: 10.1016/j.jsc.2007.12.001. 6, 131

[Koh10] S. Kohl. A simple group generated by involutions interchanging residue classes of the
integers. Math. Z., 264(4):927–938, 2010. DOI: 10.1007/s00209-009-0497-8. 2, 6, 11,
39, 78, 132

[Koh13] S. Kohl. Simple groups generated by involutions interchanging residue classes modulo
lattices in Zd . J. Group Theory, 16(1):81–86, 2013. DOI: 10.1515/jgt-2012-0031. 65

[Lag03] J. C. Lagarias. The 3x+1 problem: An annotated bibliography, 2003+.
http://arxiv.org/abs/math.NT/0309224 (Part I), http://arxiv.org/abs/

math.NT/0608208 (Part II). 5

[LN12] F. Lübeck and M. Neunhöffer. GAPDoc (Version 1.5.1). RWTH Aachen, 2012. GAP
package, http://www.gap-system.org/Packages/gapdoc.html. 146

[ML87] K. R. Matthews and G. M. Leigh. A generalization of the Syracuse algorithm in GF(q)[x].
J. Number Theory, 25:274–278, 1987. 106

[Soi16] L. Soicher. GRAPE – GRaph Algorithms using PErmutation groups (Version 4.7). Queen
Mary, University of London, 2016. GAP package, http://www.gap-system.org/

Packages/grape.html. 26, 146

http://arxiv.org/abs/math.NT/0309224
http://arxiv.org/abs/math.NT/0608208
http://arxiv.org/abs/math.NT/0608208
http://www.gap-system.org/Packages/gapdoc.html
http://www.gap-system.org/Packages/grape.html
http://www.gap-system.org/Packages/grape.html

Index

ActionOnRespectedPartition

for a tame rcwa group, 54
AllElementsOfCTZWithGivenModulus, 37
AssignGlobals, 77

balanced
definition, 16

Ball

for group, element and radius, 50
for group, point and radius, 50
for group, point, radius and action, 50
for monoid, element and radius, 61
for monoid, point, radius and action, 61

class-wise translating
definition, 16, 62

ClassPairs

m, 10
ClassReflection

cl, 9
r, m, 9

ClassRotation

cl, u, 11
cl, u; for Z x Z, 66
r, L, u; for Z x Z, 66
r, m, u, 11

ClassShift

cl, 9
cl, k; for Z x Z, 67
r, L, k; for Z x Z, 67
r, m, 9

ClassTransposition

cl1, cl2, 10
cl1, cl2 (for Z x Z), 65
r1, L1, r2, L2 (for Z x Z), 65
r1, m1, r2, m2, 10

ClassWiseConstantOn, 19
for rcwa mappings of Z x Z, 67

ClassWiseOrderPreservingOn, 19

for rcwa mappings of Z x Z, 67
ClassWiseOrderReversingOn, 19

for rcwa mappings of Z x Z, 67
Coefficients

of an rcwa mapping, 16
of an rcwa mapping of Z x Z, 67

Collatz conjecture, 5
Collatz mapping, 5
CollatzLikeMappingByOrbitTree

for rcwa group, root point and range of radii,
53

CommonRightInverse

of two injective rcwa mappings, 23
ComputeCycleLength

for an rcwa permutation and a point, 48
CT

subgroup of CT(Z), 36
the group generated by all class transposi-

tions of a ring, 36
CT

the group generated by all class transposi-
tions of Z x Z, 69

CycleRepresentativesAndLengths

for rcwa permutation and set of seed points,
48

CyclesOnFiniteOrbit, 46

DecreasingOn

for an rcwa mapping, 25
DensityOfSetOfFixedPoints

of an rcwa mapping, 16
DensityOfSupport

of an rcwa mapping, 16
DerivedSubgroup

of an rcwa group, 40
Determinant

of an rcwa mapping of Z, 19
DirectProduct

for rcwa groups over Z, 32

150

RCWA 151

Display

for an rcwa group, 35
for an rcwa mapping, 14
for an rcwa mapping of Z x Z, 67
for an rcwa monoid, 58

DistanceToNextSmallerPointInOrbit, 45
Div

for an rcwa group, 35
for an rcwa mapping, 16

Divisor

of an rcwa group, 35
of an rcwa group over Z x Z, 69
of an rcwa mapping, 16
of an rcwa mapping of Z x Z, 67

divisor
definition, 7

DrawGrid

P, yrange, xrange, filename, 70
U, yrange, xrange, filename, 70

DrawOrbitPicture

G, p0, bound, h, w, colored, palette, filename,
45

DrawOrbitPicture

for rcwa groups over Z x Z, 69

EpimorphismFromFpGroup

for an rcwa group and a search radius, 41
Exponent

of an rcwa group, 40
ExtRepOfObj, 30

Factorization

for an rcwa permutation of Z, 20
FactorizationIntoCSCRCT

for an rcwa permutation of Z, 20
FactorizationOnConnectedComponents

for an rcwa mapping and a modulus, 26
FixedPointsOfAffinePartialMappings

for an rcwa mapping, 18
FixedResidueClasses

for rcwa group and bound on modulus, 49
for rcwa mapping and bound on modulus, 49

GluckTaylorInvariant

of a trajectory, 27
Group, 31
GroupByGenerators, 31
GroupByResidueClasses

the group ‘permuting a given list of residue
classes’, 34

GroupWithGenerators, 31
GrowthFunctionOfOrbit

for an rcwa group orbit and bounds on radius
and sphere size, 44

for an rcwa group, a point and bounds on ra-
dius and sphere size, 44

GuessedDivergence

of an rcwa mapping, 28

Image

of an rcwa mapping, 15
ImageDensity

of an rcwa mapping, 23
IncreasingOn

for an rcwa mapping, 25
Index

for rcwa groups, 40
Induction

of an rcwa group, by an injective rcwa map-
ping, 35

of an rcwa mapping, by an injective rcwa
mapping, 35

Induction

for an rcwa monoid, by an injective rcwa
mapping, 59

InfoRCWA, 147
InjectiveAsMappingFrom

for an rcwa mapping, 24
integral

definition, 16
IntegralConjugate

of a tame rcwa group, 55
of a tame rcwa permutation, 55

IntegralizingConjugator

of a tame rcwa group, 55
of a tame rcwa permutation, 55

IsBalanced

for an rcwa mapping, 16
for an rcwa mapping of Z x Z, 67

IsBijective

for an rcwa mapping, 15
for an rcwa mapping of Z x Z, 67

IsClassReflection

for an rcwa mapping, 11
IsClassRotation

RCWA 152

for an rcwa mapping, 11
for an rcwa mapping of Z x Z, 67

IsClassShift

for an rcwa mapping, 11
for an rcwa mapping of Z x Z, 67

IsClassTransposition

for an rcwa mapping, 11
for an rcwa mapping of Z x Z, 67

IsClassWiseOrderPreserving

for an rcwa group, 35
for an rcwa mapping, 16
for an rcwa mapping of Z x Z, 67
for an rcwa monoid, 59

IsClassWiseTranslating

for an rcwa group, 35
for an rcwa group over Z x Z, 69
for an rcwa mapping, 16

IsConjugate

for elements of CT(R), 39
for elements of RCWA(R), 39

IsGeneralizedClassTransposition

for an rcwa mapping, 11
IsInjective

for an rcwa mapping, 15
for an rcwa mapping of Z x Z, 67

IsIntegral

for an rcwa group, 35
for an rcwa group over Z x Z, 69
for an rcwa mapping, 16
for an rcwa mapping of Z x Z, 67
for an rcwa monoid, 59

IsNaturalCT, 57
IsNaturalRCWA, 57
IsomorphismMatrixGroup

for an rcwa group, 40
IsomorphismPermGroup

for a finite rcwa group, 39
IsomorphismRcwaGroup

for a group, 31
for a group, over a given ring, 31
for GL(2,Z) and a residue class, 69
for SL(2,Z) and a residue class, 69

IsOne

for an rcwa mapping of Z x Z, 67
IsPerfect

for an rcwa group, 40
IsPrimeSwitch

for an rcwa mapping, 21
IsRcwaGroup, 56
IsRcwaGroupOverGFqx, 56
IsRcwaGroupOverZ, 56
IsRcwaGroupOverZOrZ_pi, 56
IsRcwaGroupOverZ_pi, 56
IsRcwaMapping, 30
IsRcwaMappingOfGFqx, 30
IsRcwaMappingOfZ, 30
IsRcwaMappingOfZOrZ_pi, 30
IsRcwaMappingOfZ_pi, 30
IsRcwaMappingStandardRep, 30
IsSignPreserving

for an rcwa group, 35
for an rcwa mapping, 16
for an rcwa monoid, 59

IsSolvable

for an rcwa group, 40
IsSubset

for two rcwa monoids, 59
IsSurjective

for an rcwa mapping, 15
for an rcwa mapping of Z x Z, 67

IsTame

for an rcwa group, 40
for an rcwa group over Z x Z, 69
for an rcwa mapping, 14
for an rcwa mapping of Z x Z, 67
for an rcwa monoid, 59

IsTransitive

for an rcwa group, on its underlying ring, 42
IsTransitiveOnNonnegativeIntegersInSupport

for an rcwa group over Z, 42
IsZero

for an rcwa mapping of Z x Z, 67

KernelOfActionOnRespectedPartition

for a tame rcwa group, 54

LargestSourcesOfAffineMappings

for an rcwa mapping, 17
LaTeXAndXDVI

for an rcwa mapping, 14
for an rcwa mapping of Z x Z, 67

LaTeXStringRcwaMapping

for an rcwa mapping, 14
for an rcwa mapping of Z x Z, 67

RCWA 153

LikelyContractionCentre

of an rcwa mapping, 28
LoadDatabaseOfGroupsGeneratedBy3Class-

Transpositions

small database, 72
small or large database, 73

LoadDatabaseOfGroupsGeneratedBy4Class-
Transpositions, 74

LoadDatabaseOfNonbalancedProductsOf-
ClassTranspositions, 76

LoadDatabaseOfProductsOf2Class-
Transpositions, 75

LoadRCWAExamples, 71
LoadRCWAExamples, 77
LocalizedRcwaMapping

for an rcwa mapping of Z and a prime, 13
Loops

of an rcwa mapping, 27

maximal shift
definition, 16

MaximalShift

of an rcwa mapping of Z, 16
MergerExtension

for finite permutation groups, 33
Mirrored, 37
mKnot

for an odd integer, 22
Mod

for an rcwa group, 35
for an rcwa mapping, 16

Modulus

of an rcwa group, 35
of an rcwa group over Z x Z, 69
of an rcwa mapping, 16
of an rcwa mapping of Z x Z, 67
of an rcwa monoid, 59

modulus
definition, 7

ModulusOfRcwaMonoid

for an rcwa group, 35
Monoid, 58
MonoidByGenerators, 58
MovedPoints

of an rcwa group, 42
of an rcwa mapping, 16
of an rcwa mapping of Z x Z, 67

Mult

for an rcwa group, 35
for an rcwa mapping, 16

Multiplier

of an rcwa group, 35
of an rcwa group over Z x Z, 69
of an rcwa mapping, 16
of an rcwa mapping of Z x Z, 67

multiplier
definition, 7

Multpk

for an rcwa mapping, a prime and an expo-
nent, 18

Multpk

for rcwa mapping of Z x Z, prime and expo-
nent, 67

NrClassPairs

m, 10
NrConjugacyClassesOfCTZOfOrder, 37
NrConjugacyClassesOfRCWAZOfOrder, 36
NrElementsOfCTZWithGivenModulus, 37

ObjByExtRep, 30
One

for an rcwa mapping of Z x Z, 67
Orbit

for an rcwa group and a point, 44
for an rcwa group and a set, 44

OrbitLengthBound, 39
OrbitsModulo

for an rcwa mapping and a modulus, 26
OrbitsModulo

for an rcwa group and a modulus, 52
Order

of an rcwa mapping of Z x Z, 67
of an rcwa permutation, 14

PermutationOpNC

g, P, OnPoints, 54
PreImage

of a residue class union under an rcwa map-
ping, 15

of a set of ring elements under an rcwa map-
ping, 15

PreImageElm

of a ring element under an rcwa mapping, 15
PreImagesElm

RCWA 154

of a ring element under an rcwa mapping, 15
PreImagesRepresentative

for an epi. from a free group to an rcwa
group, 41

PreImagesRepresentatives

for an epi. from a free group to an rcwa
group, 41

prime set
definition, 62

PrimeSet

of an rcwa group, 35
of an rcwa mapping, 16
of an rcwa mapping of Z x Z, 67
of an rcwa monoid, 59

PrimeSwitch

p, 21
p, k, 21

Print

for an rcwa group, 35
for an rcwa mapping, 14
for an rcwa mapping of Z x Z, 67
for an rcwa monoid, 58

ProjectionsToCoordinates

for an rcwa mapping of Z x Z, 68
ProjectionsToInvariantUnionsOfResidue-

Classes

for rcwa group and modulus, 52

Random

CT(R), 55
RCWA(R), 55

RankOfKernelOfActionOnRespected-
Partition

for a tame rcwa group, 54
RCWA

the group formed by all rcwa permutations of
a ring, 36

RCWA

the group formed by all rcwa permutations of
Z x Z, 69

Rcwa

the monoid formed by all rcwa mappings of
a ring, 59

Rcwa

the monoid formed by all rcwa permutations
of Z x Z, 69

rcwa group

class-wise order-preserving, 35
class-wise translating, 35
coercion, 16
conjugacy problem, 39
definition, 7
divisor, 35
integral, 35
membership test, 39
modulus, 35
multiplier, 35
prime set, 35
sign-preserving, 35
tame, 7
wild, 7

rcwa mapping
arithmetic operations, 14
balanced, 16
class-wise order-preserving, 16
class-wise translating, 16, 62
coercion, 16
definition, 7
divisor, 7
images under, 15
integral, 16
maximal shift, 16
modulus, 7, 62
multiplier, 7
of Z x Z, definition, 62
prime set, 16
sign-preserving, 16
sparse representation, 29
tame, 7
transition graph, 25
wild, 7

rcwa monoid
class-wise order-preserving, 59
definition, 58
integral, 59
modulus, 59
prime set, 59
sign-preserving, 59
tame, 59
wild, 59

rcwa monoids

membership test, 59
RCWABuildManual, 146
RCWAInfo, 147

RCWA 155

RcwaMapping

by arithmetical expression, 12
by finite field size, modulus and list of coef-

ficients, 12
by list of coefficients, 12
by modulus and list of values, 12
by permutation and range, 12
by residue class cycles, 12
by ring = Z x Z, modulus and coefficients, 63
by ring and list of coefficients, 12
by ring, modulus and list of coefficients, 12
by set of non-invertible primes and list of co-

efficients, 12
by two partitions of a ring into residue

classes, 12
by two partitions of Z x Z into residue

classes, 63
of Z x Z, by projections to coordinates, 63
of Z x Z, by residue class cycles, 63

RcwaMapping

by list of coefficients, sparse representation,
29

RcwaMappingsFamily

of a ring, 30
RCWATestAll, 147
RCWATestExamples, 147
RCWATestInstall, 146
RepresentativeAction

for RCWA(R) and 2 partitions of R into
residue classes, 52

G, source, destination, action, 50
RepresentativeActionPreImage

G, source, destination, action, F, 50
RespectedPartition

of a tame rcwa group, 54
of a tame rcwa permutation, 54

RespectsPartition

for an rcwa group, 54
for an rcwa permutation, 54

RestrictedBall

G, g, r, modulusbound, 50
RestrictedPerm

for an rcwa permutation and a residue class
union, 16

Restriction

of an rcwa group, by an injective rcwa map-
ping, 34

of an rcwa mapping, by an injective rcwa
mapping, 34

Restriction

for an rcwa monoid, by an injective rcwa
mapping, 59

RightInverse

of an injective rcwa mapping, 23
Root

k-th root of an rcwa mapping, 22
RotationFactor

of a class rotation, 11
of a class rotation of Z x Z, 66

SemilocalizedRcwaMapping

for an rcwa mapping of Z and a set of primes,
13

ShiftsDownOn, 19
ShiftsUpOn, 19
ShortCycles

for rcwa permutation and bound on length,
46

for rcwa permutation, set of points and bound
on length, 46

for rcwa permutation, set of points and
bounds on length and points, 46

ShortCycles

for rcwa perm. of Z x Z, set of points and
max. length, 67

ShortOrbits

for rcwa group, set of points and bound on
length, 46

for rcwa group, set of points and bounds on
length and points, 46

for rcwa monoid, set of points and bound on
length, 60

ShortResidueClassCycles

for rcwa permutation and bounds on modulus
and length, 47

ShortResidueClassOrbits

for rcwa group and bounds on modulus and
length, 47

Sign

of an rcwa permutation of Z, 19
sign-preserving

definition, 16
Sinks

of an rcwa mapping, 27

RCWA 156

Size

for an rcwa group, 38
for an rcwa group over Z x Z, 69
for an rcwa monoid, 59

SmallGeneratingSet, 35
Sources

of an rcwa mapping, 27
SparseRep

of an rcwa mapping, 29
SparseRepresentation

of an rcwa mapping, 29
SplittedClassTransposition

for a class transposition and a number of fac-
tors, 10

for a class transposition of Z x Z, 65
StandardRep

of an rcwa mapping, 29
StandardRepresentation

of an rcwa mapping, 29
String

for an rcwa group, 35
for an rcwa mapping, 14
for an rcwa mapping of Z x Z, 67
for an rcwa monoid, 58

StructureDescription

for an rcwa group, 37
Support

of an rcwa group, 42
of an rcwa mapping, 16
of an rcwa mapping of Z x Z, 67
of an rcwa monoid, 59

tame
rcwa group, 7
rcwa mapping, 7

Trajectory

for rcwa mapping, starting point, length, 24
for rcwa mapping, starting point, length,

coeff.-spec., 24
for rcwa mapping, starting point, length,

modulus, 24
for rcwa mapping, starting point, set of end

points, 24
for rcwa mapping, starting point, set of end

points, coeff.-spec., 24
for rcwa mapping, starting point, set of end

points, modulus, 24

Trajectory

for rcwa mappings of Z x Z, 67
TransitionGraph

for an rcwa mapping and a modulus, 25
TransitionMatrix

for an rcwa mapping and a modulus, 26
TransitivityCertificate

for an rcwa group over Z and a search limit,
42

TransposedClasses

of a class transposition, 10
of a class transposition of Z x Z, 65

TryIsTransitiveOnNonnegativeIntegersInSupport

for an rcwa group over Z and a search limit,
42

TryToComputeTransitivityCertificate

for an rcwa group over Z and a search limit,
42

View

for an rcwa group, 35
for an rcwa mapping, 14
for an rcwa mapping of Z x Z, 67
for an rcwa monoid, 58

wild
rcwa group, 7
rcwa mapping, 7

WreathProduct

for an rcwa group over Z and a permutation
group, 32

for an rcwa group over Z and the infinite
cyclic group, 32

Zero

for an rcwa mapping of Z x Z, 67

	About the RCWA Package
	Residue-Class-Wise Affine Mappings
	Basic definitions
	Entering residue-class-wise affine mappings
	Basic arithmetic for residue-class-wise affine mappings
	 Attributes and properties of residue-class-wise affine mappings
	Factoring residue-class-wise affine permutations
	 Extracting roots of residue-class-wise affine mappings
	 Special functions for non-bijective mappings
	 On trajectories and cycles of residue-class-wise affine mappings
	 Saving memory – the sparse representation of rcwa mappings
	The categories and families of rcwa mappings

	Residue-Class-Wise Affine Groups
	Constructing residue-class-wise affine groups
	 Basic routines for investigating residue-class-wise affine groups
	 The natural action of an rcwa group on the underlying ring
	 Special attributes of tame residue-class-wise affine groups
	Generating pseudo-random elements of RCWA(R) and CT(R)
	The categories of residue-class-wise affine groups

	Residue-Class-Wise Affine Monoids
	Constructing residue-class-wise affine monoids
	Computing with residue-class-wise affine monoids

	 Residue-Class-Wise Affine Mappings, Groups and Monoids over Z2
	 The definition of residue-class-wise affine mappings of Zd
	 Entering residue-class-wise affine mappings of Z2
	 Methods for residue-class-wise affine mappings of Z2
	 Methods for residue-class-wise affine groups and -monoids over Z2

	 Databases of Residue-Class-Wise Affine Groups and -Mappings
	The collection of examples
	Databases of rcwa groups
	Databases of rcwa mappings

	Examples
	 The Higman-Thompson group
	 Factoring Collatz' permutation of the integers
	 The 3n+1 group
	 A group with huge finite orbits
	 A group which acts 4-transitively on the positive integers
	 A group which acts 3-transitively, but not 4-transitively on Z
	 An rcwa mapping which seems to be contracting, but very slow
	Checking a result by P. Andaloro
	Two examples by Matthews and Leigh
	Orders of commutators
	 An infinite subgroup of CT(GF(2)[x]) with many torsion elements
	An abelian rcwa group over a polynomial ring
	Checking for solvability
	Some examples over (semi)localizations of the integers
	 Twisting 257-cycles into an rcwa mapping with modulus 32
	 The behaviour of the moduli of powers
	 Images and preimages under the Collatz mapping
	 An extension of the Collatz mapping T to a permutation of Z2
	 Finite quotients of Grigorchuk groups
	 Forward orbits of a monoid with 2 generators
	 The free group of rank 2 and the modular group PSL(2,Z)

	The Algorithms Implemented in RCWA
	Installation and Auxiliary Functions
	Requirements
	Installation
	Building the manual
	The testing routines
	The Info class of the package

	References
	Index

