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Preliminary remarks: Let K be a category.
A K-representation of a monoid G is an homo-
morphism

ϕ : G −→ EndK(X)

for some object X of K. In representation the-
ory G usually is a group and K typically is the
category of finite-dimensional vector spaces over
a field or the category of finite-dimensional free
modules over a ring.

We consider the case that K is the category
of infinite principal ideal domains R all of those
nontrivial residue class rings are finite, endowed
with a topology by taking the set of all residue
classes as a basis.

Depending on the base ring we will restrict
our attention to continuous mappings of a cer-
tain kind.

For purposes of saving (lots of) space we usually
do not give proofs here.
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Definition 1: Let R be as above, hence e.g.
R = Z, Z[i], Fq[x], Z(π), . . ..

We call a mapping f : R → R residue class-
wise affine or shortly rcwa-mapping if there is
an mf ∈ R\{0} such that the restriction of f
to any residue class r(mf ) ∈ R/mfR is given
by

n 7−→ ar · n + br
cr

for certain coefficients ar, br, cr ∈ R.

We always assume that mf is minimal, i.e. that
not already a proper divisor of mf satisfies the
given criteria.

We denote the set of all rcwa mappings of the
ring R by Rcwa(R), and set

RCWA(R) := Rcwa(R) ∩ Sym(R).

Rcwa(R) is a monoid and RCWA(R) is a proper
subgroup of Sym(R) – proof: elementary and
easy.
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Example 1: Although to my knowledge rcwa
mappings have not been investigated as such in
general before, there is one very popular such
mapping:

T ∈ Rcwa(Z) : n 7−→

{
n
2 if n even,

3n+1
2 if n odd.

The Collatz conjecture asserts that

∀n ∈ N ∃k ∈ N : nT k
= 1.

This is an unproven hypothesis, an extensive
commented bibliography listing about 100 pub-
lications on this question has been compiled by
Jeffrey C. Lagarias. As an example we give the
sequence starting with 27:

27, 41, 62, 31, 47, 71, 107, 161, 242, 121, 182,
91, 137, 206, 103, 155, 233, 350, 175, 263, 395,
593, 890, 445, 668, 334, 167, 251, 377, 566, 283,
425, 638, 319, 479, 719, 1079, 1619, 2429, 3644,
1822, 911, 1367, 2051, 3077, 4616, 2308, 1154,
577, 866, 433, 650, 325, 488, 244, 122, 61, 92,
46, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1.
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Example 2: We can also get permutations:
for example, define α ∈ RCWA(Z) by

n 7−→


3n
2 if n ≡ 0 (2),

3n+1
4 if n ≡ 1 (4),

3n−1
4 if n ≡ 3 (4).

It can be seen easily that α centralizes the in-
volution n 7→ −n. There have been investi-
gations concerning the finiteness of the cycle
containing 8, but to my knowledge this ques-
tion is still open. Fixed points are 0 and ±1,
the known finite cycles are±(2 3), ±(4 6 9 7 5)
and ±(44 66 99 74 111 83 62 93 70 105 79 59).
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Example 3: Similarly, we can e.g. permute
polynomial rings – define r ∈ RCWA(F2[x]) by

P 7→



(x2+x+1)P
x2+1

if P ≡ 0(x2+1),

(x2+x+1)P+x
x2+1

if P ≡ 1(x2+1),

(x2+x+1)P+x2

x2+1
if P ≡ x(x2+1),

(x2+x+1)P+(x2+x)
x2+1

otherwise.

The mapping r fixes the degree of any polyno-
mial, hence any cycle is finite. Despite of this
the order of r is infinite since there is no upper
bound on the cycle lengths.
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Definition 2: Let f ∈ Rcwa(R) and mf , ar,
br and cr be as in Definition 1. We define the

•modulus Mod(f ) of f by |mf |, the

•multiplier Mult(f ) of f by | lcmr ar|, the

• divisor Div(f ) of f by | lcmr cr|, and the

• prime set P(f ) of f as the set of prime
divisors of Mod(f ) ·Mult(f ) · Div(f ).
(PID’s are unique factorization domains!)

|x|: ‘standard associate’ of x ∈ R.
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Lemma 1 (composita of rcwa maps.):
For f, g ∈ Rcwa(R) the following hold:

1. Div(f )|Mod(f ),

2. Mod(f · g)|Mod(f ) ·Mod(g),

3. Mult(f · g)|Mult(f ) ·Mult(g),

4. Div(f · g)|Div(f ) · Div(g),

5. P(f · g) ⊆ P(f ) ∪ P(g),

6. p ∈ R prime ∧ p|Mult(f ) ∧ p - Div(g)
⇒ p|Mult(f · g),

7. p ∈ R prime ∧ p|Div(f ) ∧ p - Mult(g)
⇒ p|Div(f · g),

8. f surjective ∧ p ∈ R prime ∧ p - Mult(f )
∧ p|Div(g) ⇒ p|Div(f · g), and

9. f surjective ∧ p ∈ R prime ∧ p - Div(f )
∧ p|Mult(g) ⇒ p|Mult(f · g).
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Lemma 2 (inverses of rcwa maps.):
For σ ∈ RCWA(R) the following hold:

1. Mod(σ−1)|Mult(σ) ·Mod(σ),

2. Mult(σ)|Mod(σ−1),

3. Mult(σ−1) = Div(σ),

4. Div(σ−1) = Mult(σ), and

5. P(σ−1) = P(σ).

Lemma 3: The following hold:

1. The image of an rcwa mapping is the union
of a finite number of residue classes and a
finite subset of R.

2. The preimage of a union of residue classes
under an rcwa mapping f ∈ Rcwa(R) is a
union of residue classes, again – or in other
words, f is continuous.

3. The sets R, Rcwa(R) and RCWA(R) have
equal cardinalities.
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Definition 3: Let G be a monoid. Then a
residue class-wise affine (R-) representation,
or shortly rcwa representation, of G is an ho-
momorphism

ϕ : G → Rcwa(R).

Remark 1: Any finite group G has faithful
R-rcwa representations.

Definition 4: Let f : R → R be an rcwa
mapping and m ∈ R\{0}. Then we define the
transition graph Γf,m of f for modulus m as
follows:

• The vertices are the residue classes (mod m).

• There is an edge from r1(m) to r2(m) if and
only if there is an n1 ∈ r1(m) such that

n
f
1 ∈ r2(m).

Γf,m is a directed graph which may have loops.
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Example 4: Let β, γ ∈ RCWA(Z) be given
by

n 7−→

{
nα + 3 if n ≡ 1 (4),

nα otherwise,
resp.

n 7−→

{
nα + 3 if n ≡ −1 (4),

nα otherwise.

Then,

ϕ : S10 −→ RCWA(Z),

(1 2 3 4 6 8) 7−→ [α, β],

(3 5 7 6 9 10) 7−→ [α, γ]

is a faithful rcwa representation of the symmet-
ric group on 10 points. The mapping [α, β] is
given by

n 7−→



n if n ≡ 0, 2, 3, 8 (9),

2n− 5 if n ≡ 1 (9),

n + 3 if n ≡ 4, 7 (9),

2n− 4 if n ≡ 5 (9),
n+2

2 if n ≡ 6 (18),
n−5

2 if n ≡ 15 (18).
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Example 5: We define σ ∈ RCWA(Z) by

n 7−→



3n−3
2 if n ≡ 3 (12),

3n+6
2 if n ≡ 6 (12),

n+1
3 if n ≡ 5 (36),

n−9
3 if n ≡ 24 (36),

2n if n ≡ 12, 21 (36),

2n + 2 if n ≡ 2, 29 (36),

n + 1 if n ≡ 14, 17, 26 (36),

n otherwise.

The mapping σ is a permutation of infinite or-
der, which presumably has only finite cycles (!).
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The transition graph Γσ,36.
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Definition 5:

• We say that an rcwa mapping f is tame if
the set of moduli of its powers is bounded,
and wild otherwise.

• We say that an rcwa mapping f is flat if
Mult(f ) = Div(f ) = 1, and balanced if
Mult(f ) and Div(f ) have the same sets of
prime divisors. The flat mappings form a
submonoid of Rcwa(R). Obviously, any flat
mapping is tame.
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Examples 6: The mapping

n 7−→


n if n ≡ 0 (7),

n + 1 if n ≡ 1, 2, 3, 4, 5 (7),

n− 5 if n ≡ 6 (7)

is flat and conjugate to [α, β] as well as [α, γ].

The mapping

n 7−→



16n + 2 if n ≡ 0 (32),

16n + 18 if n ≡ 1 (2)

and n 6≡ −1 (32),

n− 31 if n ≡ −1 (32),
n
16 if n ≡ 16 (32),

n + 16 if n ≡ 2, 4, . . . , 14 (32),

n− 14 otherwise

has order 257.

15



Definition 6: We generalize the terms modu-
lus, multiplier, divisor, prime set, tame, wild
and flat to rcwa monoids G and rcwa represen-
tations in a natural way – let

Mod(G) := lcm
g∈G

Mod(g),

Mult(G) := lcm
g∈G

Mult(g),

Div(G) := lcm
g∈G

Div(g) and

P(G) := ∪g∈GP(g),

where we set Mod(G) := 0, Mult(G) := ∞
resp. Div(G) := ∞, if the respective lcm’s do
not exist. Further define

G tame :⇐⇒ Mod(G) 6= 0,

G wild :⇐⇒ Mod(G) = 0 and

G flat :⇐⇒ Mult(G) = Div(G) = 1.
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Lemma 4: For monoids G, H ≤ Rcwa(R)
the following hold:

1. G ≤ RCWA(R) ⇒ Mult(G)|Mod(G),

2. Div(G)|Mod(G),

3. H ≤ G ⇒ Mod(H)|Mod(G),

4. H ≤ G ⇒ P(H) ⊆ P(G), and

5. G ≤ RCWA(R) ⇒ P(G) is the set of prime
divisors of Mod(G).

Here we set 0|0 and ∞|0.

Theorem 1: Tameness is a class invariant:
let f ∈ Rcwa(R) and σ ∈ RCWA(R) – if f is
tame then so is fσ.

Proof: We can choose m ∈ R\{0} such that

∀n ∈ Z Mod(fn)|m, if f is bijective, resp.

∀n ∈ N Mod(fn)|m otherwise.

We have Mod((fσ)n) = Mod(σ−1 · fn · σ),
and by Lemma 1, Assertion (2) this divides
Mod(σ−1) · Mod(fn) · Mod(σ), hence due to
the above also m · Mod(σ) · Mod(σ−1). Since
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the latter expression does not depend on n, we
are done. �

Theorem 2: If f ∈ Rcwa(R) is surjective but
not injective, then f is wild.

Note that in Theorem 2 we do not say any-
thing about the coefficients – surjectivity and
non-injectivity are sufficient to conclude that
the moduli of the powers of the mapping are
not bounded.

Theorem 3: If f ∈ Rcwa(R) is surjective but
not balanced, then f is wild.

Theorem 4: If f ∈ Rcwa(R) and S ⊆ R is a
union of finitely many residue classes such that
Sf ) S, then f is wild.

Theorem 5: If f ∈ Rcwa(R) is surjective
and if there is an m ∈ R such that the transi-
tion graph Γf,m of f for module m has weakly-
connected components which are not strongly-
connected, then f is wild.
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Example 7:

σ ∈ RCWA(Z),

n 7−→



n if n ≡ 0 (4),
3n+3

2 if n ≡ 1 (4),

2n + 3 if n ≡ 2 (12),

n− 2 if n ≡ 3, 7 (12),
n
3 if n ≡ 6 (12),

n + 1 if n ≡ 10 (12),

2n− 3 if n ≡ 11 (12).

10(12)

6(12)

11(12)

2(12)

7(12)

5(12) 9(12)

3(12) 1(12)

@
�n+1

@
�

n
3

�@

n
3

@
@

@ 2n+3

�
�

�
2n−3

�
�

�
n−2

@
�3n+3

2

@�

3n+3
2

�@

3n+3
2

@
�n−2

�
@

3n+3
2

@
@

@
@

@
@

@@

3n+3
2

�H

n
3

H�
3n+3

2

19



Definition 7: Let f ∈ Rcwa(R) and

S0 ( S1 ( S2 ( . . .

be an ascending sequence of finite subsets of R
such that

1. S
f
0 = S0, that

2. for any k ∈ N the set Sk is the full preimage
of Sk−1 under f , and that

3. R =
⋃∞

k=0 Sk.

Then we call (Sk)k∈N0
a contraction sequence

of f . If the mapping f has a contraction se-
quence then we say that f is contracting and
call the set S0 the contraction centre of f .
Assuming their existence, contraction sequence
and contraction centre are determined uniquely.

Remark 2: The property contracting is a
class invariant.
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Example 8: Presumably the Collatz map-
ping T (see Example 1) is contracting, with
contraction centre

S0 = { − 136,−91,−82,−68,−61,

− 55,−41,−37,−34,−25,

− 17,−10,−7,−5,−1, 0, 1, 2}
– proving this would certainly solve the Collatz
problem. The sets S1, S2, . . . , S25 then would
have the cardinalities 30, 42, 66, 95, 138, 187,
258, 345, 467, 627, 848, 1138, 1529, 2041, 2731,
3646, 4865, 6485, 8651, 11529, 15384, 20506,
27312, 36379 resp. 48497.
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Example 9: The mapping T7 ∈ Rcwa(Z),

n 7−→


n
6 if n ≡ 0 (6),
7n+1

2 if n ≡ 1, 5 (6),
n
2 if n ≡ 2, 4 (6),
n
3 if n ≡ 3 (6).

is probably also contracting, with contraction
centre

S0 = { − 360,−206,−103,−66,−60,−59,

− 38,−19,−17,−11,−10,−5,−3,

− 1, 0, 1, 2, 4, 19, 38, 65, 67, 143, 167,

195, 228, 235, 429, 501, 585, 823, 1103,

1287, 2206, 2521, 2881, 3861, 4412,

5042, 8824, 10084}.
This is highly non-trivial, e.g. the first iterate
in the trajectory of 9595 under T7 lying in S0
is the 4361th one, and the maximum of this
sequence is

4526676671782427461185178001773394074428338782272.

This maximum is reached at iterate no. 1855.
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Definition 8: Let R ∈ {Z, Z(π)}. We call

f ∈ Rcwa(R) monotonizable if there is some
σ ∈ Sym(R) such that fσ is monotone, and
rcwa-monotonizable if we can even choose σ to
be an rcwa mapping. We call f nearly (rcwa-)
monotonizable if the above holds at least on
R\S for some finite subset S of R.

Lemma 5: If f ∈ Rcwa(Z) is surjective, not
injective and nearly monotonizable, then f is
contracting.

Theorem 6: If f ∈ Rcwa(Z) is surjective, not
injective and (nearly) rcwa-monotonizable and
if Mult(f ) 6= 0, then there is some k ∈ N such
that there are at most finitely many n ∈ Z such

that |nfk| ≥ |n|.

23



Remark 3: Theorem 6 yields that the Col-
latz mapping T (see Example 1) is not nearly
rcwa-monotonizable, although T is surjective,
not injective and we have Mult(T ) = 3 6= 0: if
we have n = 2km − 1 for arbitrary k,m ∈ N
then

nT k
=

3kn + (3k − 2k)

2k
> n.

Remark 4: In case R = Z our topology is the
one used by Harry Fürstenberg in his topologi-
cal proof of the infinitude of the set of primes.

Theorem 7: We know by Lemma 3, Asser-
tion (2) that RCWA(R) is a group of homoeo-
morphisms. Further, f ∈ Rcwa(R) is continu-
ous, and open if Mult(f ) 6= 0.

Theorem 8: If the group G < RCWA(Z) is
tame, then their orbits on Z are closed.
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Theorem 9: If R contains an infinite number
of prime elements then RCWA(R) is not finitely
generated.

Proof: Since for any prime element p ∈ R
there is a mapping σp ∈ RCWA(R) such that
P(σp) = {p} (for example the one mapping
x ∈ R which are divisible by p to x + p and
fixing everything else), and since P(σ) is fi-
nite for any σ ∈ RCWA(R), our assertion is
a consequence of Lemma 1, Assertion (5) and
Lemma 2, Assertion (5). �

Theorem 10: The action of RCWA(Z) on Z
is highly transitive.

By Dixon / Mortimer: Permutation Groups,
Cor. 7.2A thus a non-trivial normal subgroup
of RCWA(Z) acts highly transitive on Z, too.

Lemma 6: Any non-trivial normal subgroup
N � RCWA(R) has a flat element g 6= 1.

Question: Is RCWA(Z) a simple group?
What about RCWA(R) for other rings R?
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Definition 9: We say that R has the residue
class splitability property if any residue class
of R can be written as a disjoint union of two
other residue classes.

Remark 5: If R has the residue class splitabil-
ity property, we see inductively that any union
of k residue classes of R can also be written as
a union of k̃ > k residue classes of R.

The ring Z for example has the residue class
splitability property (for example a residue class
a(m) can be written as union of a(2m) and
a+m(2m)), but the rings Z(π) with 2 /∈ π and

Fq[x] for q 6= 2 have not.

Theorem 11: If the ring R has the residue
class splitability property, then RCWA(R) acts
transitively on the set of unions of finitely many
residue classes of R distinct from ∅ and R itself.

Remark 6: The requirement of the residue
class splitability property in Theorem 11 is es-
sential: e.g. for R = Z(3) the parity of the
number of residue classes in a union is invari-
ant under the action of RCWA(R), which forces
the existence of at least two orbits.
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Definition 10: Let G < RCWA(R) and P
be a partition of R into a finite set of residue
classes on which G acts naturally as a permu-
tation group. If the restriction of any element
of G to any residue class in P is affine we say
that the group G respects the partition P .

Lemma 7: Let G, H < RCWA(R) be rcwa
groups, P be a partition of R respected by G
and H and σ ∈ RCWA(R) be affine on any
element of P . Then the following hold:

1. The group 〈G, H〉 < RCWA(R) generated
by G and H respects P , also.

2. The group Gσ respects the partition Pσ.

Theorem 12: A group G < RCWA(R) is
tame if and only if G respects a partition of R
into finitely many residue classes.
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Remark 7: If G < RCWA(R) is tame then
by Theorem 12, G respects a partition P of R.
If the action of G on R is transitive, then P is
a block system for G. Hence G acts imprimi-
tive, thus at most simply transitive on R. If
RCWA(R) acts highly transitive on R (by The-
orem 10 this holds e.g. for R = Z), this implies
that a non-trivial tame group cannot be normal
in RCWA(R).

Theorem 13: If the ring R has the residue
class splitability property, then any two tame
groups G, H < RCWA(R) have mutually con-
jugate tame supergroups.

Theorem 14: If the ring R has residue class
rings of any finite non-zero cardinality, then
precisely those mappings σ ∈ RCWA(R) and
precisely those finitely-generated rcwa groups
G < RCWA(R) are tame which are conjugate
to some flat mapping resp. group.
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Theorem 15: A group G has a faithful tame
R-rcwa representation if and only if there is an
m ∈ N such that G is isomorphic to some sub-
group of the wreath product

Aff(R) o Sm.

Corollary 1: Any tame R-rcwa group G has
a faithful linear representation over the quotient
field of R.

Theorem 16: For even r ∈ N the group
RCWA(Z) has an infinite number of conjugacy
classes of elements of order r.

Conjecture 1: For odd r ∈ N the group
RCWA(Z) has only as many conjugacy classes
of elements of order r as there are subsets of
the set of divisors of r with least common mul-
tiple r.
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