Motivation

Very little is currently known about highly transitive permutation groups, i.e. those which are k-fold transitive for any k.

The group of residue class-wise affine bijections of $\mathbb Z$ belongs to this class.

It has a rich and interesting group theoretical structure. Explicit machine computation in this group is quite feasible – see the GAP-package RCWA.

It acts as a group of homoeomorphisms on \mathbb{Z} endowed with a topology by taking the set of all residue classes as a basis.

One piece of motivation also comes from the famous 3n+1 conjecture, which has not been treated by means of group theory so far.

Basic Terms

Let R denote an infinite euclidean ring, which has at least one prime ideal and all of whose proper residue class rings are finite.

We call a mapping $f : R \to R$ residue classwise affine, or in short an *rcwa* mapping, if there is an $m \in R \setminus \{0\}$ such that the restrictions of f to the residue classes $r(m) \in R/mR$ are all affine.

This means that for any residue class r(m)there are coefficients $a_{r(m)}, b_{r(m)}, c_{r(m)} \in R$ such that the restriction of the mapping f to the set $r(m) = \{r + km | k \in R\}$ is given by

$$f|_{r(m)}$$
: $r(m) \to R$,
 $n \mapsto \frac{a_{r(m)} \cdot n + b_{r(m)}}{c_{r(m)}}$

We call m the modulus of f. To make this unique, we always choose m multiplicatively minimal.

Examples

Examples of rcwa mappings of \mathbb{Z} :

1. $n \mapsto n+1$, $n \mapsto -n$, $n \mapsto n+(-1)^n$.

2. The Collatz mapping

$$T:n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \text{ even,} \\ \frac{3n+1}{2} & \text{if } n \text{ odd.} \end{cases}$$

The 3n + 1 conjecture asserts: Iterated application of T to any positive integer eventually ends up with 1.

3. The permutation

$$\alpha: n \mapsto \begin{cases} \frac{3n}{2} & \text{if } n \equiv 0 \mod 2, \\ \frac{3n+1}{4} & \text{if } n \equiv 1 \mod 4, \\ \frac{3n-1}{4} & \text{if } n \equiv 3 \mod 4. \end{cases}$$

The cycle structure of α is 'unknown'.

Aims

The bijective rcwa mappings of the ring R form a group, denoted by RCWA(R).

So far, my main goal was to find out as much as possible about the group $RCWA(\mathbb{Z})$ of the residue class-wise affine bijections of the ring of integers and its subgroups.

Results (I)

The group $RCWA(\mathbb{Z})$

- has $\mathbb{Z}^{\times} \cong C_2$ as an epimorphic image,
- has a trivial centre,
- has no solvable normal subgroup $\neq 1$,
- is not finitely generated,
- has finite subgroups of any isomorphism type, and
- has only finitely many conjugacy classes of elements of any given odd order, but infinitely many conjugacy classes of elements of any given even order.

Results (II)

The following hold:

- A finite extension G ≥ N of a subdirect product N of finitely many infinite dihedral groups has always a monomorphic image in RCWA(Z).
- The homomorphisms of a given finite group G of odd order into RCWA(\mathbb{Z}) are parametrized by the non-empty subsets of the set of equivalence classes of transitive permutation representations of Gup to inner automorphisms of RCWA(\mathbb{Z}).

Results (III)

An affine mapping $n \mapsto (an + b)/c$ of \mathbb{Q} is order-preserving if and only if a > 0.

We call a residue class-wise affine mapping of \mathbb{Z} class-wise order-preserving, if all of its affine partial mappings are order-preserving.

The following holds: The group $(\mathbb{Z}, +)$ is an epimorphic image of the subgroup

$$\mathsf{RCWA}^+(\mathbb{Z}) < \mathsf{RCWA}(\mathbb{Z})$$

of all class-wise order-preserving bijective rcwa mappings of \mathbb{Z} .

Most of the results listed so far can easily be generalized to groups RCWA(R) over euclidean rings R chosen suitably for the particular case.

Methods (I)

Epimorphisms

sgn:
$$\mathsf{RCWA}(\mathbb{Z}) \to \mathbb{Z}^{\times}$$

('sign') and

det :
$$\mathsf{RCWA}^+(\mathbb{Z}) \to (\mathbb{Z}, +)$$

('determinant') have been constructed explicitly.

In the notation used in the definition of an rcwa mapping, for $\sigma \in \text{RCWA}(\mathbb{Z})$ we have

$$\det(\sigma) = \frac{1}{m} \sum_{r(m) \in \mathbb{Z}/m\mathbb{Z}} \frac{b_{r(m)}}{|a_{r(m)}|}$$

and

$$det(\sigma) + \sum_{r(m):a_{r(m)} < 0} \frac{m - 2r}{m}$$

$$sgn(\sigma) = (-1)$$

Methods (II)

Let $f : R \to R$ be an injective rcwa mapping. Let the *restriction monomorphism*

 π_f : RCWA(R) \rightarrow RCWA(R), $\sigma \mapsto \sigma_f$ associated to f be defined such that the diagram

commutes always, and that σ_f always fixes the complement of the image of f pointwise.

Structure

10

Example I

The group generated by the permutations

$$\nu: n \mapsto n+1$$

and

$$\tau_{1(2),0(4)}: n \mapsto \begin{cases} 2n-2 & \text{if } n \equiv 1 \mod 2, \\ \frac{n+2}{2} & \text{if } n \equiv 0 \mod 4, \\ n & \text{if } n \equiv 2 \mod 4 \end{cases}$$

acts 3-transitive, but not 4-transitive on \mathbb{Z} .

(Proved computationally with RCWA.)

Example II

The group generated by the permutations

$$\alpha: n \mapsto \begin{cases} \frac{3n}{2} & \text{if } n \equiv 0 \mod 2, \\ \frac{3n+1}{4} & \text{if } n \equiv 1 \mod 4, \\ \frac{3n-1}{4} & \text{if } n \equiv 3 \mod 4 \end{cases}$$

and

$$\beta: n \mapsto \begin{cases} \frac{3n}{5} & \text{if } n \equiv 0 \mod 5, \\ \frac{9n+1}{5} & \text{if } n \equiv 1 \mod 5, \\ \frac{3n-1}{5} & \text{if } n \equiv 2 \mod 5, \\ \frac{9n-2}{5} & \text{if } n \equiv 3 \mod 5, \\ \frac{9n+4}{5} & \text{if } n \equiv 4 \mod 5 \end{cases}$$

acts (at least!) 2-transitive on the set of positive integers.

(Proved computationally with RCWA.)

Open Questions

- Is RCWA(ℤ) ▷ kersgn ▷ 1 a composition series?
- What can be said about the structure of fin.-gen. subgroups of RCWA(ℤ)? Are they all finitely presented? Can they have intermediate growth?
- Which degrees of transitivity can actions of fin.-gen. subgroups of RCWA(Z) on Z or other infinite orbits have?
- Does the group RCWA(ℤ) have nontrivial outer automorphisms?
- Find general algorithmic solutions to the membership- / conjugacy problem for fin.-gen. subgroups of RCWA(Z).

References

RCWA-[R]esidue [C]Iass-[W]ise [A]ffine Groups. GAPpackage, 2005. www.gap-system.org/Packages/rcwa.html

Meenaxi Bhattacharjee, Dugald Macpherson, Rögnvaldur G. Möller, and Peter M. Neumann. *Notes on Infinite Permutation Groups*. Number 1698 in Lecture Notes in Mathematics. Springer-Verlag, 1998.

Jeffrey C. Lagarias. The 3x+1 problem: An annotated bibliography, 2004. arxiv.org/abs/math.NT/0309224