A Simple Group Generated by Involutions Interchanging Residue Classes of the Integers

Stefan Kohl

Seminar talk. Vlore, February 12, 2009

The Group CT(Z)

By $r(m)$ we denote the residue class $r+m \mathbb{Z}$.
Let $r_{1}\left(m_{1}\right)$ and $r_{2}\left(m_{2}\right)$ be disjoint residue classes of \mathbb{Z}. Recall that this means that $\operatorname{gcd}\left(m_{1}, m_{2}\right) \nmid\left(r_{1}-r_{2}\right)$.

We always assume that $0 \leqslant r_{1}<m_{1}$ and that $0 \leqslant r_{2}<m_{2}$.

Let the class transposition $\tau_{r_{1}\left(m_{1}\right), r_{2}\left(m_{2}\right)}$ be the permutation which interchanges $r_{1}+t m_{1}$ and $r_{2}+t m_{2}$ for every $t \in \mathbb{Z}$, and which fixes everything else.

For convenience, we set

$$
\tau:=\tau_{0(2), 1(2)}: n \mapsto n+(-1)^{n} .
$$

Let $C T(\mathbb{Z})$ be the group which is generated by all class transpositions of \mathbb{Z}.

Basic Properties of $C T(\mathbb{Z})$

The group $C T(\mathbb{Z})$ is simple.

It is countable, but it has an uncountable series of simple subgroups $C T_{\mathbb{P}}(\mathbb{Z})$, which is parametrized by the sets \mathbb{P} of odd primes.

Further, the group CT(Z)

- is not finitely generated,
- acts highly transitively on \mathbb{N}_{0}, and
- its torsion elements are divisible.

Some Groups Which Embed into CT(Z)

- Every finite group embeds into $C T(\mathbb{Z})$.
- Every free group of finite rank embeds into $C T(\mathbb{Z})$.
- Every free product of finitely many finite groups embeds into CT(Z).
- The class of subgroups of $C T(\mathbb{Z})$ is closed under taking
- direct products,
- wreath products with finite groups, and
- restricted wreath products with $(\mathbb{Z},+)$.

More on Subgroups of $C T(\mathbb{Z})$

The group CT(Z) has

- finitely generated subgroups which do not have finite presentations, and
- finitely generated subgroups with unsolvable membership problem.

Since words in the generators of subgroups of $C T(\mathbb{Z})$ can always be evaluated and compared, groups with unsolvable word problem do not embed into $C T(\mathbb{Z})$.

Examples of Subgroups of $C T(\mathbb{Z})$

We have for example

- $\mathrm{F}_{2} \cong\left\langle\left(\tau \cdot \tau_{0(2), 1(4)}\right)^{2},\left(\tau \cdot \tau_{0(2), 3(4)}\right)^{2}\right\rangle$ (the free group of rank 2),
- $\operatorname{PSL}(2, \mathbb{Z}) \cong\left\langle\tau, \tau_{0(4), 2(4)} \cdot \tau_{1(2), 0(4)}\right\rangle$ (the modular group),
- $\mathrm{C}_{2} \backslash \mathbb{Z} \cong\left\langle\tau \cdot \tau_{0(2), 1(4)}, \tau_{3(8), 7(8)}\right\rangle$ (the lamplighter group), and
- $\mathbb{Z} 2 \mathbb{Z} \cong\left\langle\tau \cdot \tau_{0(2), 1(4)}, \tau_{3(8), 7(8)} \cdot \tau_{3(8), 7(16)}\right\rangle$, and
- $G:=\left\langle\tau_{0(4), 3(4)}, \tau_{0(6), 3(6)}, \tau_{1(4), 0(6)}\right\rangle$
is an infinite group, which has only finite orbits on \mathbb{Z}.

Products of Two Class Transpositions

Some examples:

σ	$\operatorname{ord}(\sigma)$
$\tau_{0(4), 2(4)} \cdot \tau_{1(4), 3(4)}$	2
$\tau_{0(3), 1(3)} \cdot \tau_{0(3), 2(3)}$	3
$\tau_{0(2), 1(2)} \cdot \tau_{0(4), 2(4)}$	4
$\tau_{1(2), 0(4)} \cdot \tau_{1(4), 2(4)}$	6
$\tau_{0(2), 1(4)} \cdot \tau_{2(3), 1(6)}$	10
$\tau_{1(2), 0(4)} \cdot \tau_{1(3), 2(6)}$	12
$\tau_{0(2), 1(4)} \cdot \tau_{0(3), 2(3)}$	15
$\tau_{0(3), 1(6)} \cdot \tau_{1(4), 3(4)}$	20
$\tau_{0(2), 1(4)} \cdot \tau_{0(5), 2(5)}$	30
$\tau_{1(3), 0(6)} \cdot \tau_{1(5), 2(5)}$	60
$\tau_{0(4), 1(6)} \cdot \tau_{1(4), 2(6)}$	∞, finite cycles
$\tau_{0(2), 1(4)} \cdot \tau_{1(2), 2(4)}$	∞, infinite cycles

Already for class transpositions which interchange residue classes with moduli $\leqslant 6$, there are 88 different subcases where the products have different cycle structure.

Intersection Types

On this slide, circles denote residue classes.

Residue classes interchanged by the class transpositions are connected by lines:

${ }^{(0,3.30)}$	$0=0$	(13,32)	(0-0	${ }^{(8,3,3)}$
(0,3,1)	- -0	(13,3)	--0-0	(83, ${ }^{\text {a }}$)
${ }^{(0,3,3,3)}$	0-0-0	(13,3.4)	(0)-8	(83,4,
(0,3,4,	$0<8$	${ }^{(1,432)}$		${ }^{(8,4.4}$
(1.1.3)	(e)-0	(14,3,	(0)-0	(8,4.4)
(1,3.3.1)	(0)-((1.3.4.)	O-	(4,4,4)

On the Series of Subgroups $C T_{\mathbb{P}}(\mathbb{Z})$

Let \mathbb{P} be a set of odd primes.
The group $C T_{\mathbb{P}}(\mathbb{Z})$ is the subgroup of $C T(\mathbb{Z})$ which is generated by all class transpositions $\tau_{r_{1}\left(m_{1}\right), r_{2}\left(m_{2}\right)}$ for which all odd prime factors of m_{1} and m_{2} lie in \mathbb{P}.

The groups $C T_{\mathbb{P}}(\mathbb{Z})$ are simple as well.

Question: Are the uncountably many groups $C T_{\mathbb{P}}(\mathbb{Z})$ pairwise nonisomorphic?
If not: Under which conditions on the sets \mathbb{P}_{1} and \mathbb{P}_{2} of odd primes is $C T_{\mathbb{P}_{1}}(\mathbb{Z}) \cong C T_{\mathbb{P}_{2}}(\mathbb{Z})$?

More on $C T_{\mathbb{P}}(\mathbb{Z})$

The group $C T_{\mathbb{P}}(\mathbb{Z})$ is finitely generated if and only if the set \mathbb{P} is finite.

The intersection of all groups $\mathrm{CT}_{\mathbb{P}}(\mathbb{Z})$ is $C T_{\emptyset}(\mathbb{Z})$. We have

$$
C T_{\emptyset}(\mathbb{Z})=\langle\kappa, \lambda, \mu, \nu\rangle
$$

where $\kappa=\tau_{0(2), 1(2)}, \lambda=\tau_{1(2), 2(4)}$,
$\mu=\tau_{0(2), 1(4)}$ and $\nu=\tau_{1(4), 2(4)}$.

John McDermott (Galway) has pointed out to me the following:

The group $C T_{\emptyset}(\mathbb{Z})$ is isomorphic to the Higman-Thompson group (cf. Higman 1974), the first finitely presented infinite simple group which has been discovered.

More on $C T_{\emptyset}(\mathbb{Z})$

To check that the group $C T_{\emptyset}(\mathbb{Z})$ is isomorphic to the Higman-Thompson group, it suffices to verify that its generators satisfy the relations given by Higman:

- $\kappa^{2}=\lambda^{2}=\mu^{2}=\nu^{2}=1$,
- $\lambda \kappa \mu \kappa \lambda \nu \kappa \nu \mu \kappa \lambda \kappa \mu=\kappa \nu \lambda \kappa \mu \nu \kappa \lambda \nu \mu \nu \lambda \nu \mu=1$,
- $(\lambda \kappa \mu \kappa \lambda \nu)^{3}=(\mu \kappa \lambda \kappa \mu \nu)^{3}=1$,
- $(\lambda \nu \mu)^{2} \kappa(\mu \nu \lambda)^{2} \kappa=1$,
- $(\lambda \nu \mu \nu)^{5}=1$,
- $(\lambda \kappa \nu \kappa \lambda \nu)^{3} \kappa \nu \kappa(\mu \kappa \nu \kappa \mu \nu)^{3} \kappa \nu \kappa \nu=1$,
- $\left((\lambda \kappa \mu \nu)^{2}(\mu \kappa \lambda \nu)^{2}\right)^{3}=1$,
- $(\lambda \nu \lambda \kappa \mu \kappa \mu \nu \lambda \nu \mu \kappa \mu \kappa)^{4}=1$,
- $(\mu \nu \mu \kappa \lambda \kappa \lambda \nu \mu \nu \lambda \kappa \lambda \kappa)^{4}=1$, and
- $(\lambda \mu \kappa \lambda \kappa \mu \lambda \kappa \nu \kappa)^{2}=(\mu \lambda \kappa \mu \kappa \lambda \mu \kappa \nu \kappa)^{2}=1$.

Simple Supergroups of $C T(\mathbb{Z})$

Let $r(m) \subseteq \mathbb{Z}$ be a residue class.
We define the class shift $\nu_{r(m)}$ by
$\nu_{r(m)} \in \operatorname{Sym}(\mathbb{Z}): n \mapsto \begin{cases}n+m & \text { if } n \in r(m), \\ n & \text { otherwise } .\end{cases}$
We define the class reflection $\varsigma_{r(m)}$ by
$\varsigma_{r(m)} \in \operatorname{Sym}(\mathbb{Z}): n \mapsto \begin{cases}-n+2 r & \text { if } n \in r(m), \\ n & \text { otherwise, }\end{cases}$
where we assume that $0 \leqslant r<m$.
The groups

$$
K^{+}:=\left\langle\mathrm{CT}(\mathbb{Z}), \nu_{1(3)} \cdot \nu_{2(3)}^{-1}\right\rangle
$$

and

$$
K^{-}:=\left\langle\mathrm{CT}(\mathbb{Z}), \nu_{1(3)} \cdot \nu_{2(3)}, \varsigma_{0(2)} \cdot \nu_{0(2)}\right\rangle
$$

are simple as well.

Computational Aspects

So far, research in computational group theory focussed mainly on finite permutation groups, matrix groups, finitely presented groups, polycyclically presented groups and automatic groups.

The subgroups of CT($\mathbb{Z})$ form another large class of groups which are accessible to computational methods. Algorithms to compute with such groups are described in

Algorithms for a Class of Infinite Permutation Groups. J. Symb. Comput. 43(2008), no. 8, 545-581.

They are implemented in the package RCWA for the computer algebra system GAP.

Many of the results presented in this talk have first been discovered during extensive experiments with the RCWA package.

A Little Example

In 1932, Lothar Collatz investigated the permutation

$$
\alpha: \quad n \mapsto \begin{cases}2 n / 3 & \text { if } n \in 0(3), \\ (4 n-1) / 3 & \text { if } n \in 1(3), \\ (4 n+1) / 3 & \text { if } n \in 2(3)\end{cases}
$$

of the integers. The cycle structure of α is unknown so far.

We want to determine whether $\alpha \in \mathrm{CT}(\mathbb{Z})$.

For this, we attempt to factor α into class transpositions. Due to the particular form of α, that is not particularly easy and we need a notable number of factors.

"Prime Switch" σ_{p}

The factorization method makes use of certain special products of class transpositions:

For an odd prime p, let

$$
\begin{aligned}
\sigma_{p}:= & \tau_{0(8), 1(2 p)} \cdot \tau_{4(8), 2 p-1(2 p)} \\
& \cdot \tau_{0(4), 1(2 p)} \cdot \tau_{2(4), 2 p-1(2 p)} \\
& \cdot \tau_{2(2 p), 1(4 p)} \cdot \tau_{4(2 p), 2 p+1(4 p)} \in \mathrm{CT}(\mathbb{Z})
\end{aligned}
$$

We have

$$
\sigma_{p}: n \mapsto \begin{cases}(p n+2 p-2) / 2 & \text { if } n \in 2(4), \\ n / 2 & \text { if } n \in 0(4) \backslash(4(4 p) \cup 8(4 p)), \\ n+2 p-7 & \text { if } n \in 8(4 p), \\ n-2 p+5 & \text { if } n \in 2 p-1(2 p), \\ n+1 & \text { if } n \in 1(2 p), \\ n-3 & \text { if } n \in 4(4 p), \\ n & \text { if } n \in 1(2) \backslash(1(2 p) \cup 2 p-1(2 p)) .\end{cases}
$$

$\alpha \in \mathrm{CT}(\mathbb{Z})$

Now we have

$$
\begin{aligned}
\alpha= & \tau_{2(3), 3(6)} \cdot \tau_{1(3), 0(6)} \cdot \tau_{0(3), 1(3)} \cdot \tau \cdot \tau_{0(36), 1(36)} \\
& \cdot \tau_{0(36), 35(36)} \cdot \tau_{0(36), 31(36)} \cdot \tau_{0(36), 23(36)} \cdot \tau_{0(36), 18(36)} \\
& \cdot \tau_{0(36), 19(36)} \cdot \tau_{0(36), 17(36)} \cdot \tau_{0(36), 13(36)} \cdot \tau_{0(36), 5(36)} \\
& \cdot \tau_{2(36), 10(36)} \cdot \tau_{2(36), 11(36)} \cdot \tau_{2(36), 15(36)} \cdot \tau_{2(36), 20(36)} \\
& \cdot \tau_{2(36), 28(36)} \cdot \tau_{2(36), 26(36)} \cdot \tau_{2(36), 25(36)} \cdot \tau_{2(36), 21(36)} \\
& \cdot \tau_{2(36), 4(36)} \cdot \tau_{3(36), 8(36)} \cdot \tau_{3(36), 7(36)} \cdot \tau_{9(36), 16(36)} \\
& \cdot \tau_{9(36), 14(36)} \cdot \tau_{9(36), 12(36)} \cdot \tau_{22(36), 34(36)} \\
& \cdot \tau_{27(36), 32(36)} \cdot \tau_{27(36), 30(36)} \cdot \tau_{29(36), 33(36)} \\
& \cdot \tau_{10(18), 35(36)} \cdot \tau_{5(18), 35(36)} \cdot \tau_{10(18), 17(36)} \\
& \cdot \tau_{5(18), 17(36)} \cdot \tau_{8(12), 14(24)} \cdot \tau_{6(9), 17(18)} \cdot \tau_{3(9), 17(18)} \\
& \cdot \tau_{0(9), 17(18)} \cdot \tau_{6(9), 16(18)} \cdot \tau_{3(9), 16(18)} \cdot \tau_{0(9), 16(18)} \\
& \cdot \tau_{6(9), 11(18)} \cdot \tau_{3(9), 11(18)} \cdot \tau_{0(9), 11(18)} \cdot \tau_{6(9), 4(18)} \\
& \cdot \tau_{3(9), 4(18)} \cdot \tau_{0(9), 4(18)} \cdot \tau_{0(6), 14(24)} \cdot \tau_{0(6), 2(24)} \\
& \cdot \tau_{8(12), 17(18)} \cdot \tau_{7(12), 17(18)} \cdot \tau_{8(12), 11(18)} \\
& \cdot \tau_{7(12), 11(18)} \cdot \sigma_{3}^{-1} \cdot \tau_{7(12), 17(18)} \cdot \tau_{2(6), 17(18)} \\
& \cdot \tau_{0(3), 17(18)} \cdot \sigma_{3}^{-3} \in \mathrm{CT}(\mathbb{Z})
\end{aligned}
$$

The $3 n+1$ Conjecture

In the 1930s, Lothar Collatz made the following conjecture:

3n+1 Conjecture. Iterated application of the mapping

$$
T: \mathbb{Z} \rightarrow \mathbb{Z}, n \mapsto \begin{cases}n / 2 & \text { if } n \text { is even } \\ (3 n+1) / 2 & \text { if } n \text { is odd }\end{cases}
$$

to any positive integer yields 1 after a finite number of steps.

This conjecture - nowadays famous - is still open today, although there are more than 200 related mathematical publications. - Cf. Jeffrey C. Lagarias' annotated bibliography (http://arxiv.org/abs/math.NT/0309224, http://arxiv.org/abs/math.NT/0608208).

A Bijective Extension of T to \mathbb{Z}^{2}

The mapping T is not injective.

Dealing with permutations and permutation groups is usually easier.

However, the mapping T can be extended in natural ways to permutations of \mathbb{Z}^{2}. -

For example:
$\sigma_{T} \in \operatorname{Sym}\left(\mathbb{Z}^{2}\right):$
$(m, n) \mapsto \begin{cases}(2 m+1,(3 n+1) / 2) & \text { if } n \in 1(2), \\ (2 m, n / 2) & \text { if } n \in 4(6), \\ (m, n / 2) & \text { otherwise } .\end{cases}$

This turns the $3 n+1$ conjecture into the question whether the line $n=4$ is a set of representatives for the cycles of σ_{T} on the half-plane $n>0$.

A Factorization of σ_{T}

Furthermore, the mapping σ_{T} can be written as the product of two permutations whose cycle structure can be described very easily:

We have $\sigma_{T}=\alpha \beta$, where
$\alpha:(m, n) \mapsto \begin{cases}(2 m, n / 2) & \text { if } 2 \mid n, \\ (2 m+1,(n-1) / 2) & \text { if } 2 \nmid n,\end{cases}$
and
$\beta:(m, n) \mapsto \begin{cases}(m / 2, n) & \text { if } 2 \mid m \text { and } n \notin 2(3), \\ (m, n) & \text { if } 2 \mid m \text { and } n \in 2(3), \\ (m, 3 n+2) & \text { if } 2 \nmid m .\end{cases}$

This motivates a move from \mathbb{Z} to \mathbb{Z}^{2}, and generalizing further, to \mathbb{Z}^{d} for $d \in \mathbb{N}$.

The Groups CT $\left(\mathbb{Z}^{d}\right)$

Let $d \in \mathbb{N}$, and let $L_{1}, L_{2} \in \mathbb{Z}^{d \times d}$ be matrices of full rank which are in Hermite normal form.

Further let $r_{1}+\mathbb{Z}^{d} L_{1}$ and $r_{2}+\mathbb{Z}^{d} L_{2}$ be disjoint residue classes, and assume that r_{1} and r_{2} are reduced modulo $\mathbb{Z}^{d} L_{1}$ and $\mathbb{Z}^{d} L_{2}$, respectively.

Let the class transposition

$$
\tau_{r_{1}+\mathbb{Z}^{d} L_{1}, r_{2}+\mathbb{Z}^{d} L_{2}} \in \operatorname{Sym}\left(\mathbb{Z}^{d}\right)
$$

be the involution which interchanges $r_{1}+k L_{1}$ and $r_{2}+k L_{2}$ for every $k \in \mathbb{Z}^{d}$, and which fixes everything else.

Let $C T\left(\mathbb{Z}^{d}\right)$ be the group which is generated by the set of all class transpositions of \mathbb{Z}^{d}.

The groups $\mathrm{CT}\left(\mathbb{Z}^{d}\right), d \in \mathbb{N}$ are simple as well.
The development version of RCWA contains already basic methods to compute in $\mathrm{CT}\left(\mathbb{Z}^{2}\right)$.

Recent Paper

Many of the results presented in this talk are included in the paper

A Simple Group Generated by Involutions Interchanging Residue Classes of the Integers. Accepted by Mathematische Zeitschrift.

