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Class Transpositions

By r(m) we denote the residue class r+mZ.

Let r1(m1) and r2(m2) be disjoint residue

classes of Z. Recall that this means that

gcd(m1,m2) - (r1 − r2).

We always assume that 0 6 r1 < m1 and that

0 6 r2 < m2.

Let the class transposition τr1(m1),r2(m2) be

the permutation which interchanges r1 + tm1

and r2 + tm2 for every t ∈ Z, and which fixes

everything else.

For convenience, we set

τ := τ0(2),1(2) : n 7→ n+ (−1)n.
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Products of Two Class Transpositions

Some examples:

σ ord(σ)
τ0(4),2(4) · τ1(4),3(4) 2
τ0(3),1(3) · τ0(3),2(3) 3
τ0(2),1(2) · τ0(4),2(4) 4
τ1(2),0(4) · τ1(4),2(4) 6
τ0(2),1(4) · τ2(3),1(6) 10
τ1(2),0(4) · τ1(3),2(6) 12
τ0(2),1(4) · τ0(3),2(3) 15
τ0(3),1(6) · τ1(4),3(4) 20
τ0(2),1(4) · τ0(5),2(5) 30
τ1(3),0(6) · τ1(5),2(5) 60
τ0(4),1(6) · τ1(4),2(6) ∞, finite cycles
τ0(2),1(4) · τ1(2),2(4) ∞, infinite cycles

Order and cycle structure of the product of

two class transpositions depend crucially on

how the 4 involved residue classes intersect

each other.
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Intersection Types

It happens that there are 18 different such
“intersection types”. On the picture below,
residue classes are denoted by circles, and
class transpositions are denoted by lines con-
necting two circles.

Already for class transpositions which inter-
change residue classes with moduli 6 6, there
are 88 different subcases where the products
have different cycle structure.
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Groups Generated by

3 Class Transpositions

Open problem: What are the possible struc-

tures of groups generated by 3 class trans-

positions? – In particular, can 3 class trans-

positions generate an infinite simple group?
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Four Class Transpositions can!

Put G := 〈κ, λ, µ, ν〉, where κ = τ0(2),1(2),

λ = τ1(2),2(4), µ = τ0(2),1(4), ν = τ1(4),2(4).

John McDermott (Galway) has pointed out

to me the following:

The group G is isomorphic to the Higman-

Thompson group (cf. Higman 1974), the

first finitely presented infinite simple group

which has been discovered.
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How to Prove this?

To check that the group G is isomorphic to

the Higman-Thompson group, it suffices to

verify that its generators satisfy the defining

relations given by Higman:

• κ2 = λ2 = µ2 = ν2 = 1,

• λκµκλνκνµκλκµ = κνλκµνκλνµνλνµ = 1,

• (λκµκλν)3 = (µκλκµν)3 = 1,

• (λνµ)2κ(µνλ)2κ = 1,

• (λνµν)5 = 1,

• (λκνκλν)3κνκ(µκνκµν)3κνκν = 1,

• ((λκµν)2(µκλν)2)3 = 1,

• (λνλκµκµνλνµκµκ)4 = 1,

• (µνµκλκλνµνλκλκ)4 = 1, and

• (λµκλκµλκνκ)2 = (µλκµκλµκνκ)2 = 1.
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The Group CT(Z)

Let CT(Z) be the group which is generated
by all class transpositions of Z.

Some results:

The group CT(Z) is simple.

The group CT(Z) itself is countable, but
it has an uncountable series of simple sub-
groups CTP(Z), which is parametrized by the
sets P of odd primes.

Further, the group CT(Z)

• is not finitely generated,

• acts highly transitively on N0, and

• its torsion elements are divisible.
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Open Problems on CT(Z)

Open Problems on CT(Z):

• Does the group CT(Z) have nontrivial
outer automorphisms?

– Intuition suggests: “likely not”, which
would be a nice result. Otherwise it
would be interesting to know how outer
automorphisms look like.

• Call a permutation of Z residue-class-wise
affine if there is an m ∈ N such that its re-
strictions to the residue classes (mod m)
are all affine. – Is CT(Z) the group of
all residue-class-wise affine permutations
which fix N0 setwise?

– Most likely yes. A way to prove this
would be to turn the heuristic factor-
ization method presently implemented in
RCWA into a proper algorithm.
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Some Groups Which Embed into CT(Z)

• Every finite group embeds into CT(Z).

• Every free group of finite rank embeds

into CT(Z).

• Every free product of finitely many finite

groups embeds into CT(Z).

• The class of subgroups of CT(Z) is closed

under taking

– direct products,

– wreath products with finite groups,

and

– restricted wreath products with (Z,+).
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Examples of Subgroups of CT(Z)

We have for example

• F2
∼= 〈(τ · τ0(2),1(4))2, (τ · τ0(2),3(4))2〉

(the free group of rank 2),

• PSL(2,Z) ∼= 〈τ, τ0(4),2(4) · τ1(2),0(4)〉
(the modular group),

• C2 o Z ∼= 〈τ · τ0(2),1(4), τ3(8),7(8)〉
(the lamplighter group), and

• Z oZ ∼= 〈τ · τ0(2),1(4), τ3(8),7(8) · τ3(8),7(16)〉,
and

• G := 〈τ0(4),3(4), τ0(6),3(6), τ1(4),0(6)〉
is an infinite group, which has only finite
orbits on Z.
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More on Subgroups of CT(Z)

The group CT(Z) has

• finitely generated subgroups which do not
have finite presentations, and

• finitely generated subgroups with unsolv-
able membership problem.

Since words in the generators of subgroups
of CT(Z) can always be evaluated and com-
pared, groups with unsolvable word problem
do not embed into CT(Z).

Open problem: Does the group CT(Z) have
subgroups of intermediate growth?

– The “standard” examples of groups of in-
termediate growth like the Grigorchuk group
likely do not embed; the question itself seems
‘wide open’.
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The Series of Subgroups CTP(Z)

Let P be a set of odd primes.

The group CTP(Z) is the subgroup of CT(Z)
which is generated by all class transpositions
τr1(m1),r2(m2) for which all odd prime factors
of m1 and m2 lie in P.

The groups CTP(Z) are simple as well. They
are finitely generated if and only if |P| <∞.

Open problem: Are the uncountably many
groups CTP(Z) pairwise nonisomorphic?
If not: Under which conditions on the sets P1
and P2 of odd primes is CTP1

(Z) ∼= CTP2
(Z)?

The group CT∅(Z) is the finitely presented
simple group generated by 4 class transposi-
tions mentioned earlier.

Open problem: Is CTP(Z) always finitely pre-
sented if P is finite?
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The Class Transposition Graph

Let Γ be the graph whose vertices are the

class transpositions and in which two vertices

are connected by an edge if their product has

finite order.

Open questions:

• All graphs with at most 4 vertices embed

into Γ. – Does every finite graph embed?

• Is Γ just a realization of the Universal

Graph? (Likely not.)
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Computational Aspects

So far, research in computational group
theory focussed mainly on finite permuta-
tion groups, matrix groups, finitely presented
groups, polycyclically presented groups and
automatic groups.

The subgroups of CT(Z) form another large
class of groups which are accessible to com-
putational methods. Algorithms to compute
with such groups are described in

Algorithms for a Class of Infinite Permutation
Groups. J. Symb. Comput. 43(2008), no. 8,
545-581.

They are implemented in the package RCWA
for the computer algebra system GAP .

Many of the results presented in this talk
have first been discovered during extensive
experiments with the RCWA package.
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A Little Example

In 1932, Lothar Collatz investigated the per-

mutation

α : n 7→


2n/3 if n ∈ 0(3),

(4n− 1)/3 if n ∈ 1(3),

(4n+ 1)/3 if n ∈ 2(3)

of the integers. The cycle structure of α is

unknown so far.

We want to determine whether α ∈ CT(Z).

For this, we attempt to factor α into class

transpositions. Due to the particular form

of α, that is not particularly easy and we need

a notable number of factors.
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“Prime Switch” σp

The factorization method makes use of cer-

tain special products of class transpositions:

For an odd prime p, let

σp := τ0(8),1(2p) · τ4(8),2p−1(2p)

· τ0(4),1(2p) · τ2(4),2p−1(2p)

· τ2(2p),1(4p) · τ4(2p),2p+1(4p) ∈ CT(Z).

We have

σp : n 7→



(pn+ 2p− 2)/2 if n ∈ 2(4),
n/2 if n ∈ 0(4) \ (4(4p) ∪ 8(4p)),
n+ 2p− 7 if n ∈ 8(4p),
n− 2p+ 5 if n ∈ 2p− 1(2p),
n+ 1 if n ∈ 1(2p),
n− 3 if n ∈ 4(4p),
n if n ∈ 1(2) \ (1(2p) ∪ 2p− 1(2p)).
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α ∈ CT(Z)

Now we have

α = τ2(3),3(6) · τ1(3),0(6) · τ0(3),1(3) · τ · τ0(36),1(36)

· τ0(36),35(36) · τ0(36),31(36) · τ0(36),23(36) · τ0(36),18(36)

· τ0(36),19(36) · τ0(36),17(36) · τ0(36),13(36) · τ0(36),5(36)

· τ2(36),10(36) · τ2(36),11(36) · τ2(36),15(36) · τ2(36),20(36)

· τ2(36),28(36) · τ2(36),26(36) · τ2(36),25(36) · τ2(36),21(36)

· τ2(36),4(36) · τ3(36),8(36) · τ3(36),7(36) · τ9(36),16(36)

· τ9(36),14(36) · τ9(36),12(36) · τ22(36),34(36)

· τ27(36),32(36) · τ27(36),30(36) · τ29(36),33(36)

· τ10(18),35(36) · τ5(18),35(36) · τ10(18),17(36)

· τ5(18),17(36) · τ8(12),14(24) · τ6(9),17(18) · τ3(9),17(18)

· τ0(9),17(18) · τ6(9),16(18) · τ3(9),16(18) · τ0(9),16(18)

· τ6(9),11(18) · τ3(9),11(18) · τ0(9),11(18) · τ6(9),4(18)

· τ3(9),4(18) · τ0(9),4(18) · τ0(6),14(24) · τ0(6),2(24)

· τ8(12),17(18) · τ7(12),17(18) · τ8(12),11(18)

· τ7(12),11(18) · σ−1
3 · τ7(12),17(18) · τ2(6),17(18)

· τ0(3),17(18) · σ−3
3 ∈ CT(Z).
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Simple Supergroups of CT(Z)

Let r(m) ⊆ Z be a residue class.

We define the class shift νr(m) by

νr(m) ∈ Sym(Z) : n 7→

n+m if n ∈ r(m),

n otherwise.

We define the class reflection ςr(m) by

ςr(m) ∈ Sym(Z) : n 7→

−n+ 2r if n ∈ r(m),

n otherwise,

where we assume that 0 6 r < m.

The groups

K+ := 〈CT(Z), ν1(3) · ν
−1
2(3)〉

and

K− := 〈CT(Z), ν1(3) · ν2(3), ς0(2) · ν0(2)〉

are simple as well.
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The 3n+ 1 Conjecture

In the 1930s, Lothar Collatz made the fol-

lowing conjecture:

3n+1 Conjecture. Iterated application of

the mapping

T : Z→ Z, n 7→

n/2 if n is even,

(3n+ 1)/2 if n is odd

to any positive integer yields 1 after a finite

number of steps.

This conjecture – nowadays famous – is still

open today, although there are more than

200 related mathematical publications. - Cf.

Jeffrey C. Lagarias’ annotated bibliography

(http://arxiv.org/abs/math.NT/0309224,

http://arxiv.org/abs/math.NT/0608208).
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A Bijective Extension of T to Z2

The mapping T is not injective.

Dealing with permutations and permutation

groups is usually easier.

However, the mapping T can be extended in

natural ways to permutations of Z2. –

For example:

σT ∈ Sym(Z2) :

(m,n) 7→


(2m+ 1, (3n+ 1)/2) if n ∈ 1(2),

(2m,n/2) if n ∈ 4(6),

(m,n/2) otherwise.

This turns the 3n + 1 conjecture into the

question whether the line n = 4 is a set of

representatives for the cycles of σT on the

half-plane n > 0.
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A Factorization of σT

Furthermore, the mapping σT can be written

as the product of two permutations whose

cycle structure can be described very easily:

We have σT = αβ, where

α : (m,n) 7→

(2m,n/2) if 2|n,
(2m+ 1, (n− 1)/2) if 2 - n,

and

β : (m,n) 7→


(m/2, n) if 2|m ∧ n 6∈ 2(3),

(m,n) if 2|m ∧ n ∈ 2(3),

(m,3n+ 2) if 2 - m.

This motivates a move from Z to Z2, and

generalizing further, to Zd for d ∈ N.
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The Groups CT(Zd)

Let d ∈ N, and let L1, L2 ∈ Zd×d be matrices
of full rank which are in Hermite normal form.

Further let r1+ZdL1 and r2+ZdL2 be disjoint
residue classes, and assume that r1 and r2 are
reduced modulo ZdL1 and ZdL2, respectively.

Let the class transposition

τr1+ZdL1,r2+ZdL2
∈ Sym(Zd)

be the involution which interchanges r1+kL1
and r2+kL2 for every k ∈ Zd, and which fixes
everything else.

Let CT(Zd) be the group which is generated
by the set of all class transpositions of Zd.

The groups CT(Zd), d ∈ N are simple as well.

The development version of RCWA contains
already basic methods to compute in CT(Z2).
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Recent Paper

Many of the results presented in this talk can

be found in my article

A Simple Group Generated by Involutions

Interchanging Residue Classes of the In-

tegers. Mathematische Zeitschrift, DOI:

10.1007/s00209-009-0497-8.

My GAP package RCWA is available at

http://www.gap-system.org/Packages/rcwa.html
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