
Final Test in MAT 410: Introduction to Topology
Answers to the Test Questions

Stefan Kohl

Question 1: Give the definition of a topological space. (3 credits)

Answer: A topological space (X, τ) is a pair consisting of a set X and a collection τ of
subsets of X such that the following hold:

• {∅, X} ⊂ τ .

• τ is closed under taking arbitrary unions and finite intersections.

The sets in τ are termed open sets.

Question 2: Let X and Y be topological spaces. Describe under which condition a
function f : X → Y is said to be

1. continuous,

2. an identification map.

(3 credits – 1 for (1.) and 2 for (2.))

Answer:

1. If and only if preimages of open sets are open.

2. If and only if it is surjective and the open sets in Y are precisely the images of the
open sets in X.

Question 3: Let X and Y be topological spaces. Give the definition of the product
topology on X × Y . (3 credits)

Answer: U ⊆ X × Y is open in the product topology if and only if, given any point
(x, y) ∈ U , there are open sets V in X and W in Y such that x ∈ V , y ∈ W and
V ×W ⊆ U .

Question 4: Give the definition of a quotient topology, and – considering different kinds
of quotient structures you know from other parts of mathematics – explain why “quo-
tient” topology is a reasonably chosen mathematical term. (4 credits – 2 of them for the
explanation)

Answer: Let X be a topological space, Y be a set and f : X → Y be a surjection. Then
the quotient topology on Y is the unique topology with which f becomes an identification
map.

As with quotients of groups, rings etc., in a quotient space, points / elements belonging
to the same equivalence class with respect to a certain equivalence relation are identified
with each other. – So the use of the term ‘quotient’ for topological spaces is in line with
its use for different mathematical structures.

Question 5: State when a topological space is said to be
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1. compact,

2. connected.

(4 credits)

Answer: A topological space is said to be

1. compact if every open cover possesses a finite subcover, and

2. connected if it admits no nontrivial partition into open sets.

Question 6: Give the definition of the diameter of a subset of a metric space. (2 credits)

Answer: The diameter of a subset A of a metric space (X, d) is sup{d(x, y) | (x, y) ∈
A× A}.

Question 7: What is the difference between the Klein bottle and the torus? – Explain.
(3 credits)

Answer: The torus is an oriented surface, and it can be embedded without self-intersection
into R3. The Klein bottle is a non-oriented surface which cannot be embedded without
self-intersection into R3.

Question 8: Let R2 be endowed with the usual topology. Either prove or disprove that
[0, 1[×]0, 1[ and [0, 1[×[0, 1] are homeomorphic subspaces of R2. (8 credits)

Answer: A nice proof (with illustrations, which I don’t want to copy here) that they are
homeomorphic can be found at

http://www-history.mcs.st-and.ac.uk/ john/MT4522/Solutions/S6.7.html

For getting the credits, you were supposed to show that you have understood in
principle in what way a homeomorphism can map [0, 1[×]0, 1[ to [0, 1[×[0, 1].

Explicitly determining an homeomorphism would be too time-consuming for an in-
class examination, and was therefore not required for getting the full number of credits.
One possibility to construct one is to partition source and range in a suitable way into 6
triangles, each, and to use linear algebra to find 6 affine mappings which map the triangles
of the source to the corresponding triangles of the range. This requires setting up and
solving 6 systems of 6 linear equations, each. Of course there are many other ways to
construct such homeomorphisms.

Question 9: Let R3 be endowed with the usual topology, and let

1. A := {(x, y, z) ∈ R3 | xyz = 0},

2. B := {(x, y, z) ∈ R3 | xyz = 1},

3. C := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 0},

4. D := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} and

5. E := {(x, y, z) ∈ R3 | |x|+ |y|+ |z| ∈ Q}

be endowed with the respective subspace topologies. Find out which of the topological
spaces A, B, C, D and E are homeomorphic (if any), and which are not. – Proofs required
(no credits without arguments). (10 credits)

Answer:
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1. A is the union of the planes x = 0, y = 0 and z = 0, so it is infinite, connected and
unbounded (i.e. not compact).

2. B is infinite, unbounded (i.e. not compact) and has 4 connected components (to
get xyz positive, either all three variables need to be positive or exactly two of them
need to be negative – and none of them may be 0).

3. C = {(0, 0, 0)} is finite.

4. D is the unit sphere about the origin, and hence infinite, connected, closed and
bounded (i.e. compact).

5. E has infinitely many connected components – one for each positive rational number.

Since cardinality, compactness and number of connected components are invariant under
homeomorphism, all five sets are pairwise non-homeomorphic.

Question 10: Find out which of the following 20 assertions are true and which are false
(only true/false answers – correct answer: 1 credit, no answer: 0 credits, wrong or unclear
answer: -1 credit, > 0 credits in total; answers must be marked by an ‘X’ in the box after
either ‘true’ or ‘false’):

1. For every n ∈ N there is a topological space with n points.
true ( X ) false ( )
Just take {1, . . . , n} with the trivial topology.

2. Given n ∈ N, up to homeomorphism there are exactly 5 · (2n + 2n−1)− 1 topological
spaces with n points.
true ( ) false ( X )
Counterexample: There is only one possible topology on a 1-element set – not 14.

3. Every metric space can also be seen as a topological space.
true ( X ) false ( )
Topological spaces are a generalization of metric spaces – see script.

4. Given any topological space X, one obtains another topological space C(X) with
the same points as X – the so-called complement space of X – by letting the open
sets in C(X) be the sets which are closed in X, and the closed sets in C(X) be the
sets which are open in X.
true ( ) false ( X )
For example in R with the usual topology, one-point sets are closed. So since
arbitrary unions of open sets are open, in C(R) every set must be open – but in R
not every set is closed. – Contradiction.

5. There are topological spaces with countably many points, which have uncountably
many open sets.
true ( X ) false ( )
Example: countable set with the discrete topology.

6. The number of points of a finite Hausdorff space is always a prime power.
true ( ) false ( X )
Counterexample: 6-element set with the discrete topology. – This is a Hausdorff
space whose number of points is not a prime power.
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7. R with the usual topology is a compact topological space.
true ( ) false ( X )
The open cover R = ∪n∈Z]n, n+ 2[ does not possess a finite subcover.

8. R with the Zariski topology is a compact topological space.
true ( X ) false ( )
See Exercise 29.

9. R with the usual topology is a connected topological space.
true ( X ) false ( )
The only sets in R which are both open and closed are ∅ and R.

10. R with the Zariski topology is a connected topological space.
true ( X ) false ( )
No subset of R is both finite and has a finite complement – so the above holds also
here.

11. All Hausdorff spaces with countably many points are compact.
true ( ) false ( X )
Counterexample: Z with the discrete topology. – Then the open cover consisting of
the 1-element subsets possesses no finite subcover.

12. In a compact metric space, every sequence of points has a convergent subsequence.
true ( X ) false ( )
See Theorem 7.22 in the script.

13. Finite topological spaces are always connected.
true ( ) false ( X )
Counterexample: discrete topological space with at least 2 points.

14. Finite topological spaces are never connected.
true ( ) false ( X )
Counterexample: any finite set with the trivial topology.

15. There are Hausdorff spaces which are totally disconnected.
true ( X ) false ( )
Example: discrete topological spaces.

16. Let Z be endowed with the topology where the open sets are the set-theoretic unions
of residue classes. Then f : Z→ Z, n 7→ n+ (−1)n is an homeomorphism.
true ( X ) false ( )
The function f maps unions of residue classes to unions of residue classes, so it is
an homeomorphism.

17. The set S ⊂ Rn (n ∈ N) of zeros of a polynomial P ∈ R[x1, . . . , xn] is always
bounded, and its diameter is bounded above by the product of the coefficients of P .
true ( ) false ( X )
Counterexample: the set of zeros of the zero polynomial is Rn, and hence unbounded.

18. Let A be a bounded subset of R3, and let B ⊂ R3 be a superset of A such that
B \ A is finite. Then the diameter of B is the same as the diameter of A.
true ( ) false ( X )
B may contain a point ‘far away’ from A.
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19. The diameter of the closure of a subset A ⊂ R is always the same as the diameter
of A itself.
true ( X ) false ( )
See Lemma 7.19 in the script.

20. The diameter of the interior of a subset A ⊂ R is always the same as the diameter
of A itself.
true ( ) false ( X )
Counterexample: A = Q ∩ [0, 1].

(20 credits)
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