Final Test in MAT 410: Introduction to Topology

Stefan Kohl

Date and time: Wednesday, February 10, 2010, 17:00 - 19:00. Name:

You have **120 minutes** of time to answer the 10 questions below. Write your answers to Questions 1 - 9 to the blank sheets of paper supplied to you, and answer Question 10 on this sheet. You are not allowed to use anything else than a pen. The rules announced by e-mail apply.

Question 1: Give the definition of a *topological space*. (3 credits)

Question 2: Let X and Y be topological spaces. Describe under which condition a function $f: X \to Y$ is said to be

- 1. continuous,
- 2. an *identification map*.

(3 credits - 1 for (1.) and 2 for (2.))

Question 3: Let X and Y be topological spaces. Give the definition of the *product topology* on $X \times Y$. (3 credits)

Question 4: Give the definition of a *quotient topology*, and – considering different kinds of quotient structures you know from other parts of mathematics – explain why "quotient" topology is a reasonably chosen mathematical term. (4 credits – 2 of them for the explanation)

Question 5: State when a topological space is said to be

- 1. compact,
- $2. \ connected.$

(4 credits)

Question 6: Give the definition of the *diameter* of a subset of a metric space. (2 credits)

Question 7: What is the difference between the Klein bottle and the torus? - Explain. (3 credits)

Question 8: Let \mathbb{R}^2 be endowed with the usual topology. Either prove or disprove that $[0,1[\times]0,1[$ and $[0,1[\times]0,1]$ are homeomorphic subspaces of \mathbb{R}^2 . (8 credits)

Question 9: Let \mathbb{R}^3 be endowed with the usual topology, and let

1. $A := \{(x, y, z) \in \mathbb{R}^3 \mid xyz = 0\},$ 2. $B := \{(x, y, z) \in \mathbb{R}^3 \mid xyz = 1\},$ 3. $C := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 0\},$ 4. $D := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ and 5. $E := \{(x, y, z) \in \mathbb{R}^3 \mid |x| + |y| + |z| \in \mathbb{Q}\}$

be endowed with the respective subspace topologies. Find out which of the topological spaces A, B, C, Dand E are homeomorphic (if any), and which are not. – Proofs required (no credits without arguments). (10 credits)

Question 10: Find out which of the following 20 assertions are true and which are false (only true/false answers – correct answer: 1 credit, no answer: 0 credits, wrong or unclear answer: -1 credit, ≥ 0 credits in total; answers must be marked by an 'X' in the box after either 'true' or 'false'):

1. For every $n \in \mathbb{N}$ there is a topological space with n points. true ()

false (

)

2.	Given $n \in \mathbb{N}$, up to homeomorphism there are exactly $5 \cdot (2^n + 2^{n-1}) - 1$ topological spaces with n			
	points. true ()	false ()	
3.	Every metric space can also be seen as a topological space. $t_{min}(x_{ij})$	falco (·)	
	true ()	taise (.)	
4.	Given any topological space X, one obtains another topological space $\mathcal{C}(X)$ with the same point as X – the so-called <i>complement space</i> of X – by letting the open sets in $\mathcal{C}(X)$ be the sets which are closed in X, and the closed sets in $\mathcal{C}(X)$ be the sets which are open in X. true () false (
		Taise (.)	
5.	There are topological spaces with countably many points, which have uncountably man true ()	y open false (sets.	
6.	The number of points of a finite Hausdorff space is always a prime power. true ()	false ()	
7.	$\mathbb R$ with the usual topology is a compact topological space. true ($~$)	false (()	
8.	\mathbb{R} with the Zariski topology is a compact topological space. true ()	false (()	
9.	$\mathbb R$ with the usual topology is a connected topological space. true ($~~)$	false (()	
10.	\mathbbm{R} with the Zariski topology is a connected topological space. true ($~$)	false ()	
11.	All Hausdorff spaces with countably many points are compact. true ()	false ()	
12.	In a compact metric space, every sequence of points has a convergent subsequence. true ()	false ()	
13.	Finite topological spaces are always connected. true ()	false ()	
14.	Finite topological spaces are never connected. true ()	false ()	
15.	There are Hausdorff spaces which are totally disconnected. true ()	false (()	
16.	Let \mathbb{Z} be endowed with the topology where the open sets are the set-theoretic union classes. Then $f: \mathbb{Z} \to \mathbb{Z}, n \mapsto n + (-1)^n$ is an homeomorphism.	s of re	sidue	
	true ()	false ()	
17.	The set $S \subset \mathbb{R}^n$ $(n \in \mathbb{N})$ of zeros of a polynomial $P \in \mathbb{R}[x_1, \ldots, x_n]$ is always bound diameter is bounded above by the product of the coefficients of P .	ded, ar	nd its	
	true ()	false ()	
18.	Let A be a bounded subset of \mathbb{R}^3 , and let $B \subset \mathbb{R}^3$ be a superset of A such that $B \setminus A$ is the diameter of B is the same as the diameter of A. true ()	finite.	Then	
10			.)	
19.	The diameter of the closure of a subset $A \subset \mathbb{R}$ is always the same as the diameter of A true ()	false ()	
20.	The diameter of the interior of a subset $A \subset \mathbb{R}$ is always the same as the diameter of A true ()	4 itself. false (
(20 c	eredits)			
_	Good luck!			

Maximum possible number of credits: 60. Grade = (number of credits)/6, rounded to the nearest integer.