Midterm Test in MAT 410: Introduction to Topology

Stefan Kohl

Date and time: Friday, December 18, 2009, 18:00-19:00.

NAME:

You have 60 minutes of time to answer the 12 questions below. You are not allowed to use anything else than a pen and blank sheets of paper. The rules announced by e-mail apply.

Question 1: Give the definition of a topological space. (3 credits)

Question 2: Give the definition of a metric space. (3 credits)

Question 3: Let $X:=\{1,2,3,4\}$ be a set of cardinality 4 , and define a topology on X by letting the open sets be $\{4\},\{1,2\},\{1,2,3\}$ and $\{2,3,4\}$. Either prove that X with this collection of open sets is a topological space, or list at least 4 violations of the axioms of a topological space. (4 credits)

Question 4: Let $X:=\{1,2,3,4\}$ be a set of cardinality 4, and let $d: X \times X \rightarrow \mathbb{R}_{0}^{+}$be the mapping defined by $d(1,1)=0, d(1,2)=1, d(1,3)=6, d(1,4)=2, d(2,1)=2, d(2,2)=0, d(2,3)=4, d(2,4)=1$, $d(3,1)=6, d(3,2)=4, d(3,3)=2, d(3,4)=2, d(4,1)=2, d(4,2)=1, d(4,3)=2$ and $d(4,4)=0$. Either prove that (X, d) is a metric space, or list at least 4 violations of the axioms of a metric space. (4 credits)

Question 5: When is a topological space said to be a Hausdorff space? (2 credits)

Question 6: Let $X:=\{1,2,3,4\}$. Give an example of a topology with which X becomes a Hausdorff space. (2 credits)

Question 7: Let $X_{1}:=\{1,2,3\}$ and $X_{2}:=\{4,5,6\}$ be topological spaces, where the open sets in X_{1} are $\emptyset,\{1,2\},\{3\}$ and X_{1}, and the open sets in X_{2} are $\emptyset,\{4,6\},\{5\}$ and X_{2}. Give an example of a homeomorphism from X_{1} to X_{2}. (2 credits)

Question 8: When is a metric space X said to be complete? (2 credits)

Question 9: Is a topological space always also a metric space? (2 credits)

Question 10: Give an example of a topological space in which the union of infinitely many closed sets is not always closed. (2 credits)

Question 11: The Cantor set is the subset of the unit interval $[0,1]$ containing precisely those numbers which have a ternary numeral involving only digits 0 and 2. (Ternary digits are digits with respect to base 3 , just like decimal digits are digits with respect to base 10). Determine the closure and the interior of the Cantor set in the usual topology on \mathbb{R}. (2 credits)

Question 12: Which problem occurs when trying to embed the Klein bottle into \mathbb{R}^{3} ? (2 credits)

- Good luck!

Maximum possible number of credits: 30 .
Grade $=($ number of credits $) / 3$, rounded to the nearest integer.

