Introduction to Topology, Exercise Sheet 2

Stefan Kohl

October 26, 2009

Due: November 4, 2009

Exercise 7: Derive formulas for computing the area of the union and the intersection of the open balls of given radii r_{1} and r_{2} about given points $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2}. You will need some case distinction. (3 credits)

Exercise 8: Let X be an arbitrary set. Define a distance function $d: X \times X \rightarrow$ \mathbb{R}_{0}^{+}such that (X, d) is a metric space. (1 credit)

Exercise 9: Define at least 3 different distance functions $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{0}^{+}$ such that $\left(\mathbb{R}^{n}, d\right)$ is a metric space. (2 credits)

Exercise 10: Let X be a set, and define a distance function $d(x, y)$ on X by setting

$$
d(x, y):= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

The metric space obtained in this way is called the discrete metric space.

1. Which are the open and the closed sets in a discrete metric space?
2. Give a necessary and sufficient criterion for the convergence of a sequence of points in a discrete metric space.
(2 credits)

Exercise 11: Let $X=\{x, y, z\}$ be a set with 3 elements. Find all possible distance functions $d: X \times X \rightarrow\{0,1,2,3\}$ endowed with which X becomes a metric space. (2 credits)

