Introduction to Topology, Exercise Sheet 3

Stefan Kohl

November 3, 2009

Due: November 13, 2009

Exercise 12: Let X be a discrete metric space.

- 1. When exactly is a function $f: X \to X$ continuous?
- 2. When exactly is a function $f: X \to X$ a homeomorphism?

(2 credits)

Exercise 13: Let $d_1, d_2 : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_0^+$ denote the Euclidean distance function and the *Manhattan distance function*, respectively. By definition, d_2 maps a pair of points $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$ to $\sum_{i=1}^n |x_i - y_i|$. Prove that a function $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous as a function from (\mathbb{R}^n, d_1) to (\mathbb{R}^n, d_1) if and only if it is continuous as a function from (\mathbb{R}^n, d_2) . (3 credits)

Exercise 14: Given $l \in \mathbb{N}$, define the distance function $d_l : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_0^+$ by

$$d_l(x,y) := \sqrt[l]{\sum_{i=1}^n |x_i - y_i|^l}.$$

Let l_1 and l_2 be any positive integers. Prove that a sequence of points is a Cauchy sequence in (\mathbb{R}^n, d_{l_1}) if and only if it is a Cauchy sequence in (\mathbb{R}^n, d_{l_2}) . (3 credits)

Exercise 15: Give a distance function $d : \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}^+_0$ such that (\mathbb{Q}, d) is a complete metric space. (2 credits)