Introduction to Topology, Exercise Sheet 5

Stefan Kohl

December 1, 2009

Due: December 14, 2009

Exercise 22: Determine the closure and the interior of \mathbb{R} in \mathbb{C} , with respect to the usual topology. (1 credit)

Exercise 23: Let (a_i) be some enumeration of the rationals. Determine the closure and the interior of the set

$$S := \bigcup_{i=1}^{\infty}]a_i - 2^{-i}, a_i + 2^{-i} [\subset \mathbb{R},$$

with respect to

- 1. the usual topology,
- 2. the Zariski topology.

(2 credits)

Exercise 24: Let X_1 and X_2 be topological spaces with three points labelled by 1, 2 and 3, where the open sets in X_1 are \emptyset , {1}, {1,2} and X_1 , and the open sets in X_2 are \emptyset , {1}, {2}, {1,2}, {1,3} and X_2 . Determine the collection of open sets in the product topology on $X_1 \times X_2$. How many open sets are there? (4 credits)

Exercise 25: Let X_1 and X_2 be the topological spaces defined in Exercise 24. Determine all identification maps from X_1 to X_2 . (1 credit)

Exercise 26: Let \mathbb{Z} be endowed with the topology defined in Exercise 19, let $r + m\mathbb{Z}$ be a residue class and let $q : \mathbb{Z} \to r + m\mathbb{Z}$, $n \mapsto mn + r$ be an identification map. Determine the collection of open sets in the corresponding quotient topology on $r + m\mathbb{Z}$, and find out whether \mathbb{Z} and $r + m\mathbb{Z}$ with the given topologies are homeomorphic or not. (2 credits)