Introduction to Topology, Exercise Sheet 6

Stefan Kohl

January 4, 2010

Due: January 13, 2010

Exercise 27: Let X be an arbitrary set. Define a topology on X such that X is a compact topological space. (1 credit)

Exercise 28: In Exercise 16, you have determined all possible topological spaces with 3 points up to homeomorphism. Find out which of them are compact and which are not. (1 credit)

Exercise 29: Determine which of the following topological spaces are compact, and give reasons why they are compact or not:

- 1. \mathbb{Z} with the discrete topology.
- 2. \mathbb{Z} with the topology defined in Exercise 19.
- 3. \mathbb{R} with the Zariski topology.
- 4. \mathbb{C} with the usual topology.
- 5. The unit sphere $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ with the usual topology.
- 6. \mathbb{Q} with the topology in which the open sets are \emptyset , \mathbb{Q} and all sets S_n , $n \in \mathbb{N}$, where S_n is the set of rationals whose denominator is $\leq n$.

(6 credits)

Exercise 30: Let $S := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ be the unit sphere endowed with the usual topology. Either give an example of a continuous function $f: S \to \mathbb{R}$ which is not bounded, or prove that every continuous function $f: S \to \mathbb{R}$ is bounded. (2 credits)