MAT 452: Introduction to Algebra II Spring 2011, Final Exam, Answers

Stefan Kohl

Answer to Question 1:

1. $(1,2,3) \cdot(2,3,4)=(1,3)(2,4)$.
2. $(1,2,3,4)^{(1,2,3,4,5)}=(2,3,4,5)$.
3. $\operatorname{ord}((1,2,3)(4,5,6,7))=\operatorname{lcm}(3,4)=12$.
4. $\operatorname{sgn}((1,2)(3,4,5))=-1$.
5. $|\langle(1,2,3,4),(1,3)\rangle|=\left|\mathrm{D}_{4}\right|=8$.
6. $\left[\mathrm{S}_{4}:\langle(1,2)(3,4)\rangle\right]=24 / 2=12$.

Answer to Question 2:

1. The product of two units is again a unit: if $a, b \in R$ are units, we have $b^{-1} a^{-1} a b=1$, thus $a b$ is a unit as well.
2. The sum of two units of a ring is not always a unit - for example 1 and -1 are units in \mathbb{Z}, but $-1+1=0$ is not a unit.
3. The set of units of a ring does not form a subring, due to (2.).
4. The set of units of a ring does not form an ideal, due to (2.).
5. There is no ring in which the units form a subring or an ideal, since every subring and every ideal contains 0 , which is not a unit.
6. It is not true that every element of a ring can be written as a sum of 4 units - for example, expressing an element $n \in \mathbb{Z}$ requires at least $|n|$ summands ± 1.

Answer to Question 3:

1. $\left|U\left(\mathbb{Z}^{2 \times 2}\right)\right|=|\mathrm{GL}(2, \mathbb{Z})|=\infty$.
2. $\left|U\left(\mathbb{F}_{5^{3}}\right)\right|=\left|\mathbb{F}_{5^{3}} \backslash\{0\}\right|=5^{3}-1=124$.
3. The number of subfields of $\mathbb{F}_{2^{24}}$ is the number of divisors of 24 , thus 8 .
4. The minimal polynomial of $\sqrt{3}+\sqrt{5}$ over \mathbb{Q} is $x^{4}-16 x^{2}+4$.
5. The nontrivial Galois automorphism of the extension field $\mathbb{Q}[\sqrt{3}]$ of \mathbb{Q} interchanges $a+b \sqrt{3}$ and $a-b \sqrt{3}$, for all $a, b \in \mathbb{Q}$.
6. The isomorphism type of the Galois group of the polynomial $x^{3}-7 x-7$ is $\mathrm{A}_{3} \cong \mathrm{C}_{3}$, since it is irreducible and its discriminant is $4 \cdot 7^{3}-27 \cdot 7^{2}=49$, which is a square in \mathbb{Q}.

Answer to Question 4: For any $a, b \in \mathbb{Q}$ put

$$
M(a, b):=\left(\begin{array}{ll}
a+b & 4 b \\
-b & a-b
\end{array}\right) .
$$

Then we have:

1. $0=M(0,0) \in R$.
2. $1=M(1,0) \in R$.
3.

$$
\begin{array}{rl}
\forall(a, b),(c, d) \in \mathbb{Q}^{2} & M(a, b)+M(c, d) \\
= & M(c, d)+M(a, b)=M(a+c, b+d) \in R .
\end{array}
$$

4. $\forall(a, b) \in \mathbb{Q}^{2}-M(a, b)=M(-a,-b) \in R$.
5.

$$
\begin{array}{rl}
\forall(a, b),(c, d) \in \mathbb{Q}^{2} & M(a, b) \cdot M(c, d) \\
= & M(c, d) \cdot M(a, b)=M(a c-3 b d, a d+b c) \in R .
\end{array}
$$

6. $\forall(a, b) \in \mathbb{Q}^{2} \backslash\{(0,0)\} \quad M(a, b)^{-1}=M\left(a /\left(a^{2}+3 b^{2}\right),-b /\left(a^{2}+3 b^{2}\right)\right) \in R$.

Therefore R is a subring of $\mathbb{Q}^{2 \times 2}$, and it is also a field.

