MAT 452: Introduction to Algebra II Spring 2011, Final Exam

Stefan Kohl

Date and time: Monday, June 27, 2011, 16:00-18:00
Question 1: Compute the following:

1. The product $(1,2,3) \cdot(2,3,4)$.
2. The conjugate $(1,2,3,4)^{(1,2,3,4,5)}$.
3. The order of the permutation $(1,2,3)(4,5,6,7)$.
4. The sign of the permutation $(1,2)(3,4,5)$.
5. The order of the group $G:=\langle(1,2,3,4),(1,3)\rangle<\mathrm{S}_{4}$.
6. The index of the subgroup $G:=\langle(1,2)(3,4)\rangle<\mathrm{S}_{4}$ in S_{4}.
(6 credits -1 each for (1.)-(6.))
Question 2: Either prove or disprove the following assertions:
7. The product of two units of a ring is always a unit as well.
8. The sum of two units of a ring is always a unit as well.
9. The set of units of a ring forms a subring.
10. The set of units of a ring forms an ideal.
11. There is no ring in which the units form a subring or an ideal.
12. Every element of a ring can be written as a sum of 4 units.
(12 credits - 2 each for (1.)-(6.))
Question 3: Compute the following:
13. The order of the group of units of the matrix ring $\mathbb{Z}^{2 \times 2}$.
14. The order of the group of units of the field $\mathbb{F}_{5^{3}}$.
15. The number of subfields of $\mathbb{F}_{2^{24}}$.
16. The minimal polynomial of $\sqrt{3}+\sqrt{5}$ over \mathbb{Q}.
17. The nontrivial Galois automorphism of the extension field $\mathbb{Q}[\sqrt{3}]$ of \mathbb{Q}.
18. The isomorphism type of the Galois group of the polynomial $x^{3}-7 x-7$.
(10 credits - 1 each for (1.)-(2.), and 2 each for (3.)-(6.))
Question 4: Let

$$
R:=\left\{\left.\left(\begin{array}{ll}
a+b & 4 b \\
-b & a-b
\end{array}\right) \right\rvert\, a, b \in \mathbb{Q}\right\} \subset \mathbb{Q}^{2 \times 2}
$$

Do the following:

1. Prove that R is a subring of $\mathbb{Q}^{2 \times 2}$.
2. Either prove or disprove that R is a field.
(12 credits)
