MAT 452: Introduction to Algebra II Spring 2011, Midterm 1, Answers

Stefan Kohl

Answer to Question 1:

- 1. Only that it is > 1.
- 2. That it is 2.
- 3. That it is ≥ 4 , and that if it is finite it is even.
- 4. It can have at most $46 = 1 + 3 + 2 \cdot 3 + 2^2 \cdot 3 + 2^3 \cdot 3$ such elements.
- 5. This is possible. For example, it may be the group V_4 of order 4.

Answer to Question 2:

- 1. $G \cong C_2 \times C_2 \times C_{20} \times C_{360}$.
- 2. $G \cong C_2 \times C_2 \times C_4 \times C_5 \times C_5 \times C_8 \times C_9$.

Answer to Question 3: The orders of subgroups of A₅ are 1,2,3,4,5,6,10,12,60. Examples are

- $\langle () \rangle \cong 1$,
- $\langle (1,2)(3,4) \rangle \cong C_2,$
- $\langle (1,2,3) \rangle \cong C_3$,
- $\langle (1,2)(3,4), (1,3)(2,4) \rangle \cong V_4 \cong C_2 \times C_2,$
- $\langle (1,2,3,4,5) \rangle \cong C_5$,
- $\langle (1,2)(3,4), (3,4,5) \rangle \cong S_3,$
- $\langle (1, 2, 3, 4, 5), (1, 2)(3, 5) \rangle \cong D_5,$
- $\langle (1, 2, 3), (1, 2, 4) \rangle \cong A_4$ and
- A₅ itself.

Subgroups of order 15, 20 or 30 would have index 4, 3 or 2. This is not possible, since if there would be such group, A_5 would act transitively on the 4, 3 or 2 cosets of that group, and since $|A_5| > 4!$ the kernel of that action would be a nontrivial normal subgroup of A_5 .

Answer to Question 4:

- 1. The center is 1.
- 2. No, this is not possible, since such subgroup would be normal.
- 3. Yes, this is possible. Take for example $G = A_6$ and $H = A_5$.