MAT 452: Introduction to Algebra II Spring 2011, Midterm 1, Answers

Stefan Kohl

Answer to Question 1:

1. Only that it is >1.
2. That it is 2 .
3. That it is $\geqslant 4$, and that if it is finite it is even.
4. It can have at most $46=1+3+2 \cdot 3+2^{2} \cdot 3+2^{3} \cdot 3$ such elements.

5 . This is possible. For example, it may be the group V_{4} of order 4.
Answer to Question 2:

1. $G \cong \mathrm{C}_{2} \times \mathrm{C}_{2} \times \mathrm{C}_{20} \times \mathrm{C}_{360}$.
2. $G \cong \mathrm{C}_{2} \times \mathrm{C}_{2} \times \mathrm{C}_{4} \times \mathrm{C}_{5} \times \mathrm{C}_{5} \times \mathrm{C}_{8} \times \mathrm{C}_{9}$.

Answer to Question 3: The orders of subgroups of A_{5} are 1,2,3,4,5,6,10,12,60. Examples are

- $\langle()\rangle \cong 1$,
- $\langle(1,2)(3,4)\rangle \cong \mathrm{C}_{2}$,
- $\langle(1,2,3)\rangle \cong \mathrm{C}_{3}$,
- $\langle(1,2)(3,4),(1,3)(2,4)\rangle \cong \mathrm{V}_{4} \cong \mathrm{C}_{2} \times \mathrm{C}_{2}$,
- $\langle(1,2,3,4,5)\rangle \cong \mathrm{C}_{5}$,
- $\langle(1,2)(3,4),(3,4,5)\rangle \cong \mathrm{S}_{3}$,
- $\langle(1,2,3,4,5),(1,2)(3,5)\rangle \cong \mathrm{D}_{5}$,
- $\langle(1,2,3),(1,2,4)\rangle \cong \mathrm{A}_{4}$ and
- A_{5} itself.

Subgroups of order 15,20 or 30 would have index 4,3 or 2 . This is not possible, since if there would be such group, A_{5} would act transitively on the 4,3 or 2 cosets of that group, and since $\left|\mathrm{A}_{5}\right|>4$! the kernel of that action would be a nontrivial normal subgroup of A_{5}.

Answer to Question 4:

1. The center is 1 .
2. No, this is not possible, since such subgroup would be normal.
3. Yes, this is possible. Take for example $G=\mathrm{A}_{6}$ and $H=\mathrm{A}_{5}$.
