MAT 551: Algebra I
 Spring 2011, Final Exam, Answers

Stefan Kohl

Answer to Question 1:

1. $(7,8) \cdot(6,7) \cdot(5,6) \cdot(4,5) \cdot(3,4) \cdot(2,3) \cdot(1,2)=(1,2,3,4,5,6,7,8)$.
2. $\operatorname{sgn}((1,2)(3,4,5)(6,7,8,9))=1$.
3. $G=\langle(1,2)(3,4)(5,6),(1,3,5)(2,4,6)\rangle \cong \mathrm{C}_{2} \times \mathrm{C}_{3} \cong \mathrm{C}_{6}$, since the generators commute. Thus $|G|=6$.
4. $|\mathrm{GL}(2,4)|=\left(4^{2}-1\right) \cdot\left(4^{2}-4\right)=15 \cdot 12=180$.
5. $|\operatorname{PSL}(2,7)|=\left(\left(7^{2}-1\right) \cdot\left(7^{2}-7\right)\right) /(6 \cdot \operatorname{gcd}(6,2))=(48 \cdot 42) /(6 \cdot 2)=168$.
6. $\mathrm{Z}(\mathrm{SL}(3, \mathbb{Z}))=1$, since the equation $x^{3}=1$ has only one solution in \mathbb{Z}.

Answer to Question 2:

1. $\left|\mathrm{A}_{4} \times \mathrm{D}_{4}\right|=\left|\mathrm{A}_{4}\right| \cdot\left|\mathrm{D}_{4}\right|=12 \cdot 8=96$.
2. The smallest n such that $A_{4} \times D_{4}$ embeds into S_{n} is 8 , since each of the factors embeds into S_{4}, and $\left|\mathrm{A}_{4} \times \mathrm{D}_{4}\right| \nmid\left|\mathrm{S}_{7}\right|=7!=5040$.
3. $\left[\mathrm{S}_{8}: \mathrm{A}_{4} \times \mathrm{D}_{4}\right]=\left|\mathrm{S}_{8}\right| /\left|\mathrm{A}_{4} \times \mathrm{D}_{4}\right|=8!/ 96=40320 / 96=420$.
4. A Sylow 2-subgroup of $\mathrm{A}_{4} \times \mathrm{D}_{4}$ is $\mathrm{V}_{4} \times \mathrm{D}_{4}$.
5. All semidirect products have the same order, i.e. 96 , since the set of elements of any semidirect product is the cartesian product of the sets of elements of the factors.

Answer to Question 3: $G=\langle(1,2,3,4,5,6,7),(2,3,5)(4,7,6)\rangle \cong \mathrm{C}_{7} \rtimes \mathrm{C}_{3}$.
Answer to Question 4: Every element of G either changes or fixes parity of all points, thus $\{1,3,5,7,9,11\}$ and $\{2,4,6,8,10,12\}$ are blocks for the action of G on S. Therefore the action of G on S is not primitive.

Answer to Question 5: There are two cases:

1. $a \in H$. Then $\{a, b, c, d\} \subset H$ since $b=a \cdot a b, c=a \cdot a c$ and $d=a \cdot a d$, thus $H=G$ and $[G: H]=1$. A coset representative in this case is 1 .
2. $a \notin H$. Then $\{a, b, c, d\} \cap H=\emptyset$, and all generators a, b, c, d of G lie in the same coset of H by the same reasoning as above. Thus $[G: H]=2$, and coset representatives are 1 and a, i.e. $G=H \cup a H$.
Remark: in the second case there is a kind of sign homomorphism from G to C_{2} whose kernel is H, where the elements of H are all products of even numbers of generators a, b, c, d of G. Thus we are in a similar situation as with transpositions generating S_{n}, where A_{n} is the subgroup consisting of products of even numbers of generators.
