MAT 551: Algebra I
 Spring 2011, Final Exam

Stefan Kohl

Date and time: Monday, June 27, 2011, 14:00-16:00
Question 1: Compute the following:

1. The product $(7,8) \cdot(6,7) \cdot(5,6) \cdot(4,5) \cdot(3,4) \cdot(2,3) \cdot(1,2)$.
2. The sign of the permutation $(1,2)(3,4,5)(6,7,8,9)$.
3. The order of the group $G:=\langle(1,2)(3,4)(5,6),(1,3,5)(2,4,6)\rangle<\mathrm{S}_{6}$.
4. The order of the group $\operatorname{GL}(2,4)$.

5 . The order of the group $\operatorname{PSL}(2,7)$.
6 . The center of the group $\operatorname{SL}(3, \mathbb{Z})$.
(10 credits - 1 each for (1.)-(2.), and 2 each for (3.)-(6.))
Question 2: Compute the following:

1. The order of the direct product $\mathrm{A}_{4} \times \mathrm{D}_{4}$.
2. The smallest n such that $\mathrm{A}_{4} \times \mathrm{D}_{4}$ embeds into S_{n}.
3. The index of $\mathrm{A}_{4} \times \mathrm{D}_{4}$ in S_{n} for the n found in (2.).
4. A Sylow 2-subgroup of $\mathrm{A}_{4} \times \mathrm{D}_{4}$.
5. All possible orders of semidirect products $\mathrm{A}_{4} \rtimes \mathrm{D}_{4}$.
(10 credits - 2 each for (1.)-(5.))
Question 3: Determine a subgroup $G<\mathrm{S}_{7}$ of order 21. (6 credits)
Question 4: Let

$$
G:=\langle(1,2,3,4,5,6,7,8,9,10,11,12),(2,4)(6,8)(10,12),(1,3,5,7)\rangle<\mathrm{S}_{12} .
$$

Find out whether the action of G on the set $S:=\{1,2,3,4,5,6,7,8,9,10,11,12\}$ is primitive. If it is primitive, find out whether it is 2 -transitive. Otherwise find a block system, i.e. an equivalence relation on S which is invariant under the action of G. (6 credits - proof required!)

Question 5: Let G be a group which is generated by four pairwise distinct elements a, b, c and d of order 2. Further let $H<G$ be the subgroup which is generated by all products of 2 generators, i.e. by $a b, a c a d, b c, b d$ and $c d$. Determine all possible values of the index $[G: H]$ of H in G, and give representatives for the cosets of H in G in all cases. (8 credits - proof required!)

