MAT 551: Algebra I Spring 2011, Midterm 1, Answers

Stefan Kohl

Answer to Question 1: In $(\mathbb{Z}, +)$, 1 + 1 = 2, and 3^2 is either 3 + 3 = 6 (exponentiation) or -2 + 3 + 2 = 3 (conjugation). In S₆, $(1, 2) \cdot (1, 3) = (1, 2, 3)$, $(1, 2, 3, 4, 5)^{(2,3)(4,5)} = (1, 3, 2, 5, 4)$ and $((1, 2, 3, 4)(5, 6))^{12} = 1$.

Answer to Question 2: All except for the second are isomorphic to the given group. The first is the elementary divisors form and the third is the abelian invariants form.

Answer to Question 3:

- 1. The provided information is not enough to compute the group order for example G may be the group $C_2 \times C_2 \times C_2 \times C_2$ of order 16, or G may be the infinite group $D_{\infty} \times D_{\infty}$, or whatsoever.
- 2. There is no reason why G cannot be simple. In fact it can be simple. To take an arbitrary example, if a = (1,2)(3,4), b = (1,3)(4,5), c = (1,2)(3,5) and d = (1,4)(2,5), then $G = A_5$.
- 3. The group G can have at most $1 + 4 + 3 \cdot 4 + 3^2 \cdot 4 = 53$ elements which can be written as products of 3 or less of the generators a, b, c, d.

Answer to Question 4: The conditions imply that for every ordered 4-tuple (p_1, p_2, p_3, p_4) of distinct points from $\{1, 2, ..., 11\}$ there is precisely one element of G which maps (1, 2, 3, 4) to (p_1, p_2, p_3, p_4) . So the order of G equals the number of such 4-tuples, which is $11 \cdot 10 \cdot 9 \cdot 8 = 7920$.

Finally, the group G is the Mathieu group M_{11} , the smallest of the 26 sporadic simple groups.