MAT 551: Algebra I
 Spring 2011, Midterm 1, Answers

Stefan Kohl

Answer to Question 1: In $(\mathbb{Z},+), 1+1=2$, and 3^{2} is either $3+3=6$ (exponentiation) or $-2+3+2=3$ (conjugation). In $\mathrm{S}_{6},(1,2) \cdot(1,3)=(1,2,3)$, $(1,2,3,4,5)^{(2,3)(4,5)}=(1,3,2,5,4)$ and $((1,2,3,4)(5,6))^{12}=1$.

Answer to Question 2: All except for the second are isomorphic to the given group. The first is the elementary divisors form and the third is the abelian invariants form.

Answer to Question 3:

1. The provided information is not enough to compute the group order - for example G may be the group $\mathrm{C}_{2} \times \mathrm{C}_{2} \times \mathrm{C}_{2} \times \mathrm{C}_{2}$ of order 16 , or G may be the infinite group $\mathrm{D}_{\infty} \times \mathrm{D}_{\infty}$, or whatsoever.
2. There is no reason why G cannot be simple. - In fact it can be simple. To take an arbitrary example, if $a=(1,2)(3,4), b=(1,3)(4,5), c=$ $(1,2)(3,5)$ and $d=(1,4)(2,5)$, then $G=\mathrm{A}_{5}$.
3. The group G can have at most $1+4+3 \cdot 4+3^{2} \cdot 4=53$ elements which can be written as products of 3 or less of the generators a, b, c, d.

Answer to Question 4: The conditions imply that for every ordered 4-tuple $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ of distinct points from $\{1,2, \ldots, 11\}$ there is precisely one element of G which maps $(1,2,3,4)$ to $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$. So the order of G equals the number of such 4 -tuples, which is $11 \cdot 10 \cdot 9 \cdot 8=7920$.

Finally, the group G is the Mathieu group M_{11}, the smallest of the 26 sporadic simple groups.

