MAT 551: Algebra I
 Spring 2011, Midterm 1

Stefan Kohl

Date and time: Monday, May 2, 2011, 16:30-17:45
Question 1:

1. In $(\mathbb{Z},+)$ compute $1+1$ and 3^{2}. For the last expression give both possible interpretations. (Be careful - the group $(\mathbb{Z},+)$ is not the $\operatorname{ring} \mathbb{Z}$, so there is no ' \because '.)
2. In S_{6} compute $(1,2) \cdot(1,3),(1,2,3,4,5)^{(2,3)(4,5)}$ and $((1,2,3,4)(5,6))^{12}$. (6 credits)

Question 2: Find out which of the following abelian groups are isomorphic to $\mathrm{C}_{4} \times \mathrm{C}_{6} \times \mathrm{C}_{8}$ and which are not:

1. $\mathrm{C}_{2} \times \mathrm{C}_{4} \times \mathrm{C}_{24}$.
2. $\mathrm{C}_{2} \times \mathrm{C}_{6} \times \mathrm{C}_{16}$.
3. $\mathrm{C}_{2} \times \mathrm{C}_{3} \times \mathrm{C}_{4} \times \mathrm{C}_{8}$.
4. $\mathrm{C}_{2} \times \mathrm{C}_{8} \times \mathrm{C}_{12}$.
(4 credits)
Question 3: Let G be a group which is generated by four pairwise distinct elements a, b, c and d of order 2 .
5. Either compute the order of G or explain why the given information is not enough for this.
6. Can you give a reason why the group G is not simple?
7. How many elements which can be written as products of 3 or less of the generators a, b, c, d can the group G have at most?
(6 credits)
Question 4: Let $G<\mathrm{S}_{11}$ be a group which acts 4 -transitively on the set $\{1,2, \ldots, 11\}$ and in which no element except for the identity moves less than 8 points. Compute the order of G. (4 credits, +2 extra credits if you can tell the name of the group G - it's famous)
