MAT 551: Algebra I
 Spring 2011, Midterm 2, Answers

Stefan Kohl

Answer to Question 1: We have

1. $(1,2,3)(4,5) \cdot(1,2,3,4,5)=(1,3,2,4)$.
2. $((1,2,3,4)(5,6,7))^{5}=(1,2,3,4)(5,7,6)$.
3. $(1,2,3,4,5)^{(3,4,5)}=(1,2,4,5,3)$.
4. $\operatorname{ord}((1,2,3)(4,5)(6,7,8,9,10))=\operatorname{lcm}(2,3,5)=30$.
5. $\operatorname{sgn}((1,2,3)(4,5,6))=1$.
6. $\operatorname{sgn}((1,2,3,4)(5,6)(7,8))=-1$.

Answer to Question 2: We have

1. $\left|S_{4}\right|=4!=24$,
2. $\left|\mathrm{A}_{5}\right|=\frac{5!}{2}=60$, and
3. $\left[\mathrm{S}_{4}: \mathrm{V}_{4}\right]=\frac{24}{4}=6$.
4. The number of conjugacy classes of S_{5} is 7 . Representatives are (), (1, 2), $(1,2)(3,4),(1,2,3),(1,2,3)(4,5),(1,2,3,4)$ and $(1,2,3,4,5)$.
5. The number of conjugacy classes of elements of order 2 in S_{6} is 3 . Representatives are $(1,2),(1,2)(3,4)$ and $(1,2)(3,4)(5,6)$.
6. The number of Sylow 2-subgroups of S_{4} is 3 , since except for 1 this is the only odd divisor of $\left|S_{4}\right|=24$. - There cannot be only one Sylow 2-subgroup since S_{4} has 9 elements of order 2.

Answer to Question 3: Since G acts 2-transitively on $\{1, \ldots, n\}$, for any two distinct points $a, b \in\{1, \ldots, n\}$ there is some $g \in G$ such that $1^{g}=a$ and $2^{g}=b$. This implies $(1,2)^{g}=(a, b) \in G$. Thus G contains all transpositions. Since the transpositions generate S_{n}, we have $G=\mathrm{S}_{n}$.

Answer to Question 4: The only nontrivial divisor $d \equiv 1 \bmod 5$ of $|G|=120$ is 6 , so G must have 6 Sylow 5 -subgroups. The group G acts transitively on these 6 groups via conjugation, and since G is simple this action is faithful. So G embeds into S_{6}. We further conclude that G must embed into A_{6} - if it would not, its intersection with A_{6} would be a nontrivial normal subgroup. It follows $\left[\mathrm{A}_{6}: G\right]=3$. The action of A_{6} on the cosets of G is transitive, and since A_{6} is simple, its kernel is 1 . This yields a contradiction since A_{6} has order 360 and therefore does not embed into S_{3}.

