MAT 551: Algebra I Spring 2011, Midterm 2, Answers

Stefan Kohl

Answer to Question 1: We have

- 1. $(1,2,3)(4,5) \cdot (1,2,3,4,5) = (1,3,2,4).$
- 2. $((1,2,3,4)(5,6,7))^5 = (1,2,3,4)(5,7,6).$
- 3. $(1, 2, 3, 4, 5)^{(3,4,5)} = (1, 2, 4, 5, 3).$
- 4. $\operatorname{ord}((1,2,3)(4,5)(6,7,8,9,10)) = \operatorname{lcm}(2,3,5) = 30.$
- 5. sgn((1,2,3)(4,5,6)) = 1.
- 6. $\operatorname{sgn}((1,2,3,4)(5,6)(7,8)) = -1.$

Answer to Question 2: We have

- 1. $|S_4| = 4! = 24$,
- 2. $|A_5| = \frac{5!}{2} = 60$, and
- 3. $[S_4:V_4] = \frac{24}{4} = 6.$
- 4. The number of conjugacy classes of S_5 is 7. Representatives are (), (1, 2), (1, 2)(3, 4), (1, 2, 3), (1, 2, 3)(4, 5), (1, 2, 3, 4) and (1, 2, 3, 4, 5).
- 5. The number of conjugacy classes of elements of order 2 in S_6 is 3. Representatives are (1, 2), (1, 2)(3, 4) and (1, 2)(3, 4)(5, 6).
- 6. The number of Sylow 2-subgroups of S_4 is 3, since except for 1 this is the only odd divisor of $|S_4| = 24$. – There cannot be only one Sylow 2-subgroup since S_4 has 9 elements of order 2.

Answer to Question 3: Since G acts 2-transitively on $\{1, \ldots, n\}$, for any two distinct points $a, b \in \{1, \ldots, n\}$ there is some $g \in G$ such that $1^g = a$ and $2^g = b$. This implies $(1, 2)^g = (a, b) \in G$. Thus G contains all transpositions. Since the transpositions generate S_n , we have $G = S_n$.

Answer to Question 4: The only nontrivial divisor $d \equiv 1 \mod 5$ of |G| = 120is 6, so G must have 6 Sylow 5-subgroups. The group G acts transitively on these 6 groups via conjugation, and since G is simple this action is faithful. So G embeds into S₆. We further conclude that G must embed into A₆ – if it would not, its intersection with A₆ would be a nontrivial normal subgroup. It follows $[A_6:G] = 3$. The action of A₆ on the cosets of G is transitive, and since A₆ is simple, its kernel is 1. This yields a contradiction since A₆ has order 360 and therefore does not embed into S₃.