MAT 551: Algebra I
 Spring 2011, Midterm 2

Stefan Kohl

Date and time: Wednesday, May 25, 2011, 16:30-17:45
Question 1: Compute the following:

1. The product $(1,2,3)(4,5) \cdot(1,2,3,4,5)$.
2. The power $((1,2,3,4)(5,6,7))^{5}$.
3. The conjugate $(1,2,3,4,5)^{(3,4,5)}$.
4. The order of the permutation $(1,2,3)(4,5)(6,7,8,9,10)$.
5. The sign of the permutation $(1,2,3)(4,5,6)$.

6 . The sign of the permutation $(1,2,3,4)(5,6)(7,8)$.
(6 credits)
Question 2: Compute the following:

1. The order of the symmetric group S_{4} of degree 4 .
2. The order of the alternating group A_{5} of degree 5 .
3. The index of the Klein 4 -group V_{4} in S_{4}.
4. The number of conjugacy classes of S_{5}.
5. The number of conjugacy classes of elements of order 2 in S_{6}.
6. The number of Sylow 2-subgroups of S_{4}.
(6 credits)
Question 3: Let $n \in \mathbb{N}$, and let $G \leqslant \mathrm{~S}_{n}$ be a group which acts 2-transitively on the set $\{1, \ldots, n\}$ and which contains the transposition (1,2). Determine the group G. (4 credits -1 for the result, 3 for the proof)
Hint: look at the conjugates of $(1,2)$ in G.
Question 4: Prove that there is no simple group of order 120. (4 credits)
Hint: assume that there would be a simple group G of order 120. For a suitable prime divisor p of $|G|$, consider the action of the group G on the set of its Sylow p-subgroups via conjugation.
