Final Test in MAT 641: Computational Algebra I

Stefan Kohl

Date and time: Tuesday, February 9, 2010, 17:00 - 19:00. Name:

You have **120 minutes** of time to answer the 10 questions below. Write your answers to Questions 1 - 9 to the blank sheets of paper supplied to you, and answer Question 10 on this sheet. You are not allowed to use anything else than a pen.

Question 1: Give the definition of an *ideal* of a ring. (2 credits)

Question 2: State

- 1. the *Ideal Membership Problem* for ideals of multivariate polynomial rings and
- 2. the Implizitization Problem for affine varieties.

(3 credits - 1 for a. and 2 for b.)

Question 3: Give the definition of a *Groebner basis* of an ideal of a multivariate polynomial ring. (3 credits)

Question 4: State the *Hilbert Basis Theorem*. (2 credits)

Question 5: State the Ascending Chain Condition (ACC) and the Descending Chain Condition (DCC) for ideals of a ring. (2 credits)

Question 6: Give a polynomial $P \in \mathbb{R}[x, y, z]$ such that the affine variety $V(P) \subset \mathbb{R}^3$ is the unit sphere about the origin. (2 credits)

Question 7: Let $P := 4x^3yz^2 + xyz - 7y^6z + 8z^8 + 2xy - 1 \in \mathbb{R}[x, y, z]$. Write down the polynomial P

- 1. in lex order,
- 2. in grlex order and
- 3. in grevlex order.

Always assume x > y > z. In all cases, determine the multidegree, the leading coefficient, the leading monomial and the leading term of P with respect to the respective monomial ordering. (6 credits)

Question 8: Let $P := 4x^3y - 3xy^2z$, $a := x^2 - y^2z$, $b := xy + z^3$ and $c := y^2 - yz$.

- 1. Divide P by a, b and c (in this order), using lex order.
- 2. Find out whether or not $\{a, b, c\}$ is a Groebner basis for the ideal $\langle a, b, c \rangle$ (proof required). *Hint:* Try to divide by a, b and c in different order.

(10 credits)

Question 9: Let $X := V((x^2 + y^2 + z^2 + 3)^2 - 16(x^2 + y^2)) \subset \mathbb{R}^3$.

- 1. Determine the points with integer coordinates on the affine variety X. How many of them are there?
- 2. Either draw a picture of the affine variety X, or give a precise verbal description of its shape.

(10 credits)

Question 10: Find out which of the following 20 assertions are true and which are false (only true/false answers – correct answer: 1 credit, no answer: 0 credits, wrong or unclear answer: -1 credit, ≥ 0 credits in total; answers must be marked by an 'X' in the box after either 'true' or 'false'):

1. Multivariate polynomial rings over a field are commutative. true ()

false ()

9	Multivariate polynomial rings are principal ideal domains.		
2.	true ()	false ()
3.	Multivariate polynomial rings in finitely many variables over a field satisfy the Ascene $C_{\rm res}$ disting (ACC) for ideals		ain
	Condition (ACC) for ideals. true ()	false ()
4. Multivariate polynomial rings in finitely many variables over a field satisfy the Desce			
	Condition (DCC) for ideals. true ()	false ()
5.	For univariate polynomial rings, lex order, grlex order and grevlex order are the same.		
	true ()	false ()
6.	If K is a finite field and $n \in \mathbb{N}$, then every affine variety in K^n has only finitely many true ()	points. false ()
7.	Let K be a field and $n \in \mathbb{N}$. Then an affine variety in K^n has only finitely many points if and only if the polynomial ring in a variables over K is finite.		
	if the polynomial ring in n variables over K is finite. true ()	false ()
8.	Let p be a prime, and let K be a field of characteristic p. Then every affine variety in K^n $(n \in \mathbb{N})$		
	is finite, and the number of its points is a power of p . true ()	false ()
9.	The affine varieties in \mathbb{R}^1 are precisely the finite subsets and \mathbb{R}^1 itself.		
	true ()	false ()
10.	The affine varieties in \mathbb{R}^2 are precisely the finite subsets and \mathbb{R}^2 itself. true ()	false ()
11.	The affine varieties in \mathbb{C}^1 are precisely the finite subsets and \mathbb{C}^1 itself.	C 1 ()
19	true () The efficience we introduce $V(r^2 + r^2 + 1) \in \mathbb{D}^2$ is events.	false ()
12.	The affine variety $V(x^2 + y^2 + 1) < \mathbb{R}^2$ is empty. true ()	false ()
13.	The affine variety $V(x^2 + y^2 + 1) < \mathbb{F}_2^2$ is empty. true ()	false ()
14.	An affine variety in \mathbb{Q}^n $(n \in \mathbb{N})$ is either finite or countable. true ()	false ()
15.	There is an algorithm which can always decide whether a given affine variety in \mathbb{Q}^n	$(n \in \mathbb{N})$) is
	empty or not. true ()	false ()
16.	A subset $V \subseteq \mathbb{R}^n$ $(n \in \mathbb{N})$ is an affine variety if and only if it is convex. true ()	false ()
17.	The set-theoretic union of finitely many affine varieties is also an affine variety. true ()	false ()
18. The set-theoretic union of an arbitrary (possibly infinite) collection of affine varieties is			
	affine variety. true ()	false ()
19. Knowing a Groebner basis for an ideal $I < K[x_1, \ldots, x_n]$, the ideal membership problem for			
	algorithmically decidable. true ()	false ()
20.	The algorithm for multivariate polynomial division terminates always. true ()	false ()
(20 credits)			
_	Good luck!		

Maximum possible number of credits: 60. Grade = (number of credits)/6, rounded to the nearest integer.