Midterm Test in MAT 641: Computational Algebra I Answers to the Test Questions

Stefan Kohl

Question 1: Give the definition of a field. (3 credits)
Answer: There are various ways to write down the definition of a field. - For example:

- A field is a commutative ring with one, in which every nonzero element is a unit.
- A field is an abelian group $(K,+)$ endowed with a second binary operation \cdot such that
- $(K \backslash\{0\}, \cdot)$ is an abelian group, and
- for all $a, b, c \in K$ it is $a \cdot(b+c)=a \cdot b+a \cdot c$.
- A field is a triple $(K,+, \cdot)$ consisting of a set K and binary operations $+, \cdot: K \times K \rightarrow K$ such that the following hold:

1. $\exists 0 \in K: \forall a \in K a+0=a$ (existence of neutral element with respect to addition).
2. $\forall a, b, c \in K a+(b+c)=(a+b)+c$ (associativity of addition).
3. $\forall a, b \in K a+b=b+a$ (commutativity of addition).
4. $\forall a \in K \exists-a \in K: a+-a=0$ (existence of additive inverses).
5. $\exists 1 \in K: \forall a \in K a \cdot 1=a$ (existence of neutral element with respect to multiplication).
6. $\forall a, b, c \in K a \cdot(b \cdot c)=(a \cdot b) \cdot c$ (associativity of multiplication).
7. $\forall a, b \in K a \cdot b=b \cdot a$ (commutativity of multiplication).
8. $\forall a \in K \exists a^{-1} \in K: a \cdot a^{-1}=1$ (existence of multiplicative inverses).
9. $\forall a, b, c \in K a \cdot(b+c)=a \cdot b+a \cdot c$ (distributivity).

All of these - and many other variations - were accepted.
Question 2: Give the definition of the characteristic of a field. (2 credits)
Answer: The characteristic of a field K is the least positive number of ones one needs to add in K in order to get zero in case such number exists, and zero otherwise.

Question 3: Precisely for which positive integers n is there a finite field with n elements? (1 credit)
Answer: There is a finite field with n elements if and only if n is a prime power.
Question 4: Why is it not necessary to distinguish between left and right ideals in polynomial rings? (2 credits)
Answer: Because polynomial rings are commutative.
Question 5: When exactly is the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ in n variables over a field K a principal ideal domain? (2 credits)

Answer: If and only if $n=1$.
Question 6: Give an example of a polynomial $f \in \mathbb{F}_{3}[x] \backslash\{0\}$ such that $f: \mathbb{F}_{3} \rightarrow \mathbb{F}_{3}$ is the zero function. (2 credits)
Answer: $x^{3}+2 x$ (for example).
Question 7: Give the definition of an affine variety. (2 credits)
Answer: An affine variety is the set of common zeros of a finite set of polynomials in finitely many variables over a field.

Question 8: Give the definition of a rational parametric representation of an affine variety. (4 credits)
Answer: A rational parametric representation of an affine variety $V=\left\langle f_{1} \ldots, f_{s}\right\rangle \subset k^{n}$ is a set of rational functions $r_{1}, \ldots, r_{n} \in k\left(t_{1}, \ldots, t_{m}\right)$ such that all points given by $x_{i}=r_{i}\left(t_{1}, \ldots, t_{m}\right), i \in$ $\{1, \ldots, n\}, t_{j} \in k$ lie in V, and such that V is the smallest affine variety containing these points.

Question 9: When is an affine variety called unirational? (2 credits)
Answer: If and only if it has a rational parametric representation.
Question 10: Describe the location of a Bezier cubic relative to its control polygon. (2 credits)
Answer: It lies inside.
Question 11: Is the union of infinitely many affine varieties necessarily also an affine variety? Either prove or disprove. (5 credits)
Answer: Every point $p \in \mathbb{R}$ is an affine variety, since there is always a polynomial $f \in \mathbb{R}[x]$ which has p as its only zero. While infinite proper subsets of \mathbb{R} are unions of 1 -point subsets, they are not affine varieties, since the number of zeros of a nonzero polynomial in $\mathbb{R}[x]$ is bounded above by its degree. So the answer to the question is "no".

Question 12: Let V be the affine variety $\left\langle x^{4}+y^{4}-1\right\rangle \subset \mathbb{Q}^{2}$. Determine $|V|$. (No proof required!) (3 credits)
Answer: It is $V=\{(0,-1),(0,1),(-1,0),(1,0)\}$, and so $|V|=4-c f$. Exercise 2.11 in the book.

