Computational Algebra II, Exercise Sheet 2

Stefan Kohl

April 15, 2010

Due: April 29, 2010

Exercise 1: Determine all points with integer coordinates on the following affine varieties:

1. $V\left(x^{2}+y, x+y^{2}\right)$. (2 credits)
2. $V\left(4 x^{2}-45 y^{2}+4 x-30 y-5\right)$. (4 credits)

Exercise 2: Let $I:=\left\langle x y^{3}, x^{2} y^{2}, x^{3} y\right\rangle \subset \mathbb{R}[x, y]$ be an ideal. Either prove or disprove that $\left\{x y^{3}, x^{2} y^{2}, x^{3} y\right\}$ is a Groebner basis for I. (2 credits)

Exercise 3: Let $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and let $B=\left\{f_{1}, \ldots, f_{m}\right\} \subset I$ be a Groebner basis for I. Either prove or disprove the following assertions:

1. The set $\tilde{B}:=\left\{f_{m}, f_{m-1}, \ldots, f_{1}\right\} \subset I$ is a Groebner basis for I as well. (2 credits)
2. For every $f_{m+1} \in I$, the set $\tilde{B}:=\left\{f_{1}, \ldots, f_{m}, f_{m+1}\right\}$ is a Groebner basis for I as well. (2 credits)

Exercise 4: Let $I:=\left\langle x^{2}+y, x+y^{2}\right\rangle \subset \mathbb{R}[x, y]$ be an ideal. Assume lex order with $x>y$.

1. Find a Groebner basis for I. (4 credits)
2. How many elements has a Groebner basis for I at least? (2 credits)
3. Find a Groebner basis for I with the smallest possible number of elements. (2 credits)
