# Computational Algebra II, Exercise Sheet 3 

Stefan Kohl

May 1, 2010

Due: May 18, 2010

Exercise 1: Is it true that no basis of a polynomial ideal can be shorter (i.e. have fewer elements) than its reduced Groebner basis? - Either prove or give a counterexample. (4 credits)

Exercise 2: Determine all points (i.e. not only those with integer coordinates, etc.) on the affine variety $V\left(x^{2}+y, y^{2}+z, z^{2}+x\right) \subset \mathbb{C}^{3}$. ( 6 credits)

Exercise 3: Find out which of the following ideals of $\mathbb{R}[x, y, z]$ are equal (if any):
$I_{1}=\langle x+y+z-1\rangle$,
$I_{2}=\left\langle x+y+z-1, x^{2}+y^{2}+z^{2}-1\right\rangle$,
$I_{3}=\left\langle x+y+z-1, x^{2}+y^{2}+z^{2}-1, x^{3}+y^{3}+z^{3}-1\right\rangle$,
$I_{4}=\left\langle x+y+z-1, x^{2}+y^{2}+z^{2}-1, x^{3}+y^{3}+z^{3}-1, x^{4}+y^{4}+z^{4}-1\right\rangle$,
$I_{5}=\left\langle x+y+z-1, x^{2}+y^{2}+z^{2}-1, x^{3}+y^{3}+z^{3}-1, x^{4}+y^{4}+z^{4}-1, x^{5}+y^{5}+z^{5}-1\right\rangle$.
(4 credits)

Exercise 4: Let $a, b$ and $c$ be real numbers which satisfy the equations

$$
\begin{array}{r}
a+b+c=3, \\
a^{2}+b^{2}+c^{2}=5, \\
a^{3}+b^{3}+c^{3}=7 .
\end{array}
$$

Verify that $a^{4}+b^{4}+c^{4}=9$, and compute $a^{5}+b^{5}+c^{5}, a^{6}+b^{6}+c^{6}$ and $a^{7}+b^{7}+c^{7}$. ( 6 credits)

