Final Test in MAT 642: Computational Algebra II

Stefan Kohl

Date and time: Tuesday, June 22, 2010, 14:00-16:00.
Name:

You have 120 minutes of time to answer the 8 questions below. Write your answers to the blank sheets of paper supplied to you. You are not allowed to use anything else than a pen.

Question 1: Give the definitions of a

- basis, of a
- Groebner basis, of a
- minimal Groebner basis and of a
- reduced Groebner basis
of an ideal of a polynomial ring, and explain the importance of these four terms. (8 parts, worth 2 credits each - 16 credits in total)

Question 2: State the Buchberger algorithm. (6 credits)
Question 3: Explain how to solve a system of polynomial equations by computer. Is it always a good idea to proceed in the same way in hand computations? - Explain. (6 credits)

Question 4: Find all solutions $(x, y, z) \in \mathbb{C}^{3}$ of the following system of polynomial equations:

$$
\begin{aligned}
x^{2} y+2 y z-z^{3} & =1 \\
x^{3}-2 x^{2} y+2 z^{3} & =2 \\
\frac{1}{4} x^{3}+y z & =3
\end{aligned}
$$

(6 credits)
Question 5: Find all solutions $(x, y, z) \in \mathbb{C}^{3}$ of the following system of polynomial equations:

$$
\begin{array}{r}
x+y+z=0 \\
x^{2} y+2 x y^{2}+x y z+y^{3}+y^{2} z=1
\end{array}
$$

(6 credits)
Question 6: Try to determine all solutions $(x, y) \in \mathbb{C}^{2}$ of the following system of polynomial equations:

$$
\begin{aligned}
& x^{4}-y=1 \\
& x-y^{4}=1
\end{aligned}
$$

Which problem do you encounter when trying to write down the solutions? (6 credits)
Question 7: Compute the reduced Groebner bases for the ideal $\left\langle x^{2}+y-1, x y+y-1\right\rangle \subset \mathbb{C}[x, y]$ for

1. lex order and
2. grlex order,
where $x>y$. (6 credits)
Question 8: Is there a constant c such that all ideals of $\mathbb{C}[x, y]$ can be generated by c or fewer polynomials?

- Either prove or disprove. (8 credits)
- Good luck!

Maximum possible number of credits: 60 .

