Midterm 1 in MAT 642: Computational Algebra II Answers to the Test Questions

Stefan Kohl

Question 1: Give the definition of a Groebner basis of an ideal of a multivariate polynomial ring over a field. (3 credits)
Answer: A basis of such an ideal is called a Groebner basis (w.r.t. a certain monomial order) if the ideal generated by the leading terms of the basis elements contains the leading terms of all elements of the ideal.

Question 2: Explain the importance of Groebner bases in the context of the membership problem for ideals of multivariate polynomial rings. (3 credits)
Answer: Multivariate polynomial division by the elements of a Groebner basis can decide the ideal membership problem. In contrast, when dividing a polynomial by the elements of a basis other than a Groebner basis, one may get a nonzero remainder also if the polynomial is contained in the ideal.

Question 3: State the Hilbert Basis Theorem. (2 credits)
Answer: Ideals of polynomial rings in finitely many variables over a field are finitely generated.
Question 4: Give an example of a polynomial $f \in \mathbb{R}[x, y]$ whose monomials are ordered in pairwise different ways in lex order, grlex order and grevlex order. Assume that $x>y$. How many monomials does such a polynomial f need to have at least? (3 credits)
Answer: An example with 3 monomials is $x^{2}+x y^{2}+y^{3}$ (lex order), which reads $x y^{2}+y^{3}+x^{2}$ in grlex order and $y^{3}+x y^{2}+x^{2}$ in grevlex order. Since 2 monomials cannot be permuted in 3 different ways, 3 is the least possible number of monomials of such a polynomial.

Question 5: Let $I:=\left\langle x^{2}+y, x+y^{2}\right\rangle \subset \mathbb{R}[x, y]$ be an ideal. Assume lex order with $x>y$. Either prove or disprove that $\left\{x^{2}+y, x+y^{2}\right\}$ is a Groebner basis for I. (4 credits)
Answer: The leading term of $\left(x^{2}+y\right)+\left(-x+y^{2}\right)\left(x+y^{2}\right)=y^{4}+y \in I$ is y^{4}, which is not contained in the ideal generated by the leading terms x^{2} and x of the given basis elements. Therefore the given basis is not a Groebner basis.

Question 6: Either prove or disprove the assertion that every ideal of $\mathbb{R}[x, y]$ has a generating set with not more than 2 elements. (3 credits)
Answer: For example the ideal $\left\langle x y^{3}, x^{2} y^{2}, x^{3} y\right\rangle \subset \mathbb{R}[x, y]$ has no generating set with 2 or fewer elements (draw the graph!).

Question 7: Determine the number of points with integer coordinates on the affine variety

$$
V\left(x^{3}+x z^{2}-y^{2}+x y z\right) \subset \mathbb{R}^{3}
$$

(proof required!). (4 credits)
Answer: For $z=0$ we obtain the equation $x^{3}=y^{2}$, which is satisfied by $x=n^{2}$ and $y=n^{3}$ for any integer n. Hence there are infinitely many points with integer coordinates on the given affine variety.

Question 8 (answered): Here are the 8 varieties together with their descriptions:

1. $V\left(x^{2}+y^{2}+z^{2}-1,\left(x^{2}-1\right)\left(y^{2}-1\right)\left(z^{2}-1\right)\right)$.

Description: h.) the set $\{(\pm 1,0,0),(0, \pm 1,0),(0,0, \pm 1)\}$.
2. $V\left(x^{2}+y^{2}-z^{2}, x\right)$.

Description: c.) two intersecting lines.
3. $V\left(\left(x^{2}-1\right)\left(y^{2}-1\right)\left(z^{2}-1\right), x y z\right)$.

Description: a.) 12 lines.
4. $V\left(x^{2}+y^{2}+z^{2}-1,(x-1)^{2}+(y-2)^{2}+(z-3)^{2}-1\right)$.

Description: b.) the empty set.
5. $V\left(x^{2}+y^{2}-z^{2}, x^{2}+y^{2}+z^{2}-1\right)$. Description: f.) two circles.
6. $V\left(\left(x^{2}+y^{2}+z^{2}+24\right)^{2}-100\left(x^{2}+y^{2}\right)\right)$. Description: g.) a torus.
7. $V\left(x^{2}+2 y^{2}+3 z^{2}-4\right)$.

Description: e.) an ellipsoid.
8. $V\left(x^{2}+y^{2}-z^{2}, z\right)$.

Description: d.) the set $\{(0,0,0)\}$.
(8 credits -1 for each correct attribution)

