Midterm 1 in MAT 642: Computational Algebra II

Stefan Kohl

Date and time: Tuesday, April 6, 2010, 14:00-15:00.
Room: C 411

NAME:

You have $\mathbf{6 0}$ minutes of time to answer the 8 questions below. You are not allowed to use anything else than a pen and blank sheets of paper.

Question 1: Give the definition of a Groebner basis of an ideal of a multivariate polynomial ring over a field. (3 credits)

Question 2: Explain the importance of Groebner bases in the context of the membership problem for ideals of multivariate polynomial rings. (3 credits)

Question 3: State the Hilbert Basis Theorem. (2 credits)

Question 4: Give an example of a polynomial $f \in \mathbb{R}[x, y]$ whose monomials are ordered in pairwise different ways in lex order, grlex order and grevlex order. Assume that $x>y$. How many monomials does such a polynomial f need to have at least? (3 credits)

Question 5: Let $I:=\left\langle x^{2}+y, x+y^{2}\right\rangle \subset \mathbb{R}[x, y]$ be an ideal. Assume lex order with $x>y$. Either prove or disprove that $\left\{x^{2}+y, x+y^{2}\right\}$ is a Groebner basis for I. (4 credits)

Question 6: Either prove or disprove the assertion that every ideal of $\mathbb{R}[x, y]$ has a generating set with not more than 2 elements. (3 credits)

Question 7: Determine the number of points with integer coordinates on the affine variety

$$
V\left(x^{3}+x z^{2}-y^{2}+x y z\right) \subset \mathbb{R}^{3}
$$

(proof required!). (4 credits)

Question 8: Find out which description fits to which affine variety in \mathbb{R}^{3}. - Here are the varieties:

1. $V\left(x^{2}+y^{2}+z^{2}-1,\left(x^{2}-1\right)\left(y^{2}-1\right)\left(z^{2}-1\right)\right)$.

Description:
2. $V\left(x^{2}+y^{2}-z^{2}, x\right)$.

Description:
3. $V\left(\left(x^{2}-1\right)\left(y^{2}-1\right)\left(z^{2}-1\right), x y z\right)$.

Description:
4. $V\left(x^{2}+y^{2}+z^{2}-1,(x-1)^{2}+(y-2)^{2}+(z-3)^{2}-1\right)$.

Description:
5. $V\left(x^{2}+y^{2}-z^{2}, x^{2}+y^{2}+z^{2}-1\right)$.

Description:
6. $V\left(\left(x^{2}+y^{2}+z^{2}+24\right)^{2}-100\left(x^{2}+y^{2}\right)\right)$.

Description:
7. $V\left(x^{2}+2 y^{2}+3 z^{2}-4\right)$.

Description:
8. $V\left(x^{2}+y^{2}-z^{2}, z\right)$.

Description:
... and here are the descriptions: a.) 12 lines, b.) the empty set, c.) two intersecting lines, d.) the set $\{(0,0,0)\}$, e.) an ellipsoid, f.) two circles, g.) a torus, h. $)$ the set $\{(\pm 1,0,0),(0, \pm 1,0),(0,0, \pm 1)\}$.
(8 credits - 1 for each correct attribution)

- Good luck!

Maximum possible number of credits: 30 .
Grade $=($ number of credits $) / 3$, rounded to the nearest integer.

