Midterm 2 in MAT 642: Computational Algebra II
 Answers

Stefan Kohl

Question 1: When is a Groebner basis said to be minimal, and when is it said to be reduced? (4 credits)

Answer: A Groebner basis G for a polynomial ideal I is said to be minimal if

1. $\mathrm{LC}(p)=1$ for all $p \in G$ and
2. $\forall p \in G \operatorname{LT}(p) \notin\langle\operatorname{LT}(G \backslash\{p\})\rangle$.

It is said to be reduced if in addition for all $p \in G$ no monomial of p lies in $\langle\operatorname{LT}(G \backslash\{p\})\rangle$.
Question 2: Explain the importance of the concept of a reduced Groebner basis. (3 credits)
Answer: The reduced Groebner basis of a polynomial ideal with respect to a given monomial order is unique. Therefore reduced Groebner bases can be used to check polynomial ideals for equality.

Question 3: Let $n \in \mathbb{N}$, let $r \in\{0, \ldots, n\}$ and let K be some field. Give the definition of the r-th elimination ideal I_{r} of an ideal I of $K\left[x_{1}, \ldots, x_{n}\right]$. (3 credits)
Answer: $\quad I_{r}=I \cap K\left[x_{r+1}, \ldots, x_{n}\right]$.
Question 4: State the Elimination Theorem. (4 credits)
Answer: Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal and let G be a Groebner basis for I with respect to lex order where $x_{1}>x_{2}>\cdots>x_{n}$. Then for every $0 \leqslant l \leqslant n$, the set $G_{l}=G \cap K\left[x_{l+1}, \ldots, x_{n}\right]$ is a Groebner basis of the l-th elimination ideal I_{l}.

Question 5: Briefly explain why the Buchberger Algorithm terminates. (4 credits)
Answer: Let $B=B_{0}$ be the initial basis with which the Buchberger Algorithm is invoked, and let B_{1}, B_{2}, \ldots be the augmented bases in the order in which they are encountered in the passes through the main loop of the algorithm. Then, $\left\langle\mathrm{LT}\left(B_{0}\right)\right\rangle,\left\langle\mathrm{LT}\left(B_{1}\right)\right\rangle, \ldots$ is an ascending chain of ideals. Since polynomial rings in finitely many variables satisfy the ACC for ideals, this chain eventually gets constant. Once this happens, the Buchberger Algorithm terminates.

Question 6: Compute reduced Groebner bases for the following ideals for lexicographic order:

1. $\langle a, b, c, d, e, f\rangle \subset \mathbb{C}[a, b, c, d, e, f]$.
2. $\left\langle x^{2} y^{3} z^{2}+\sqrt{2} x y^{2}-5 x^{2} y+7,8+\sqrt{5} \pi^{2}, x^{2} y^{2} z-3 x^{3} y+2 x y z^{2}\right\rangle \subset \mathbb{C}[x, y, z]$.
(4 credits)
Answer: $\{a, b, c, d, e, f\}$ respectively $\{1\} .-$ Note that one generator of the second ideal is a constant, which means that this ideal is the unit ideal.

Question 7: Solve the system of equations

$$
\begin{aligned}
x^{2}+y^{2} & =1, \\
x y+x+y & =1
\end{aligned}
$$

for $x, y \in \mathbb{C}$. - All solutions need to be found. (8 credits -2 for the trivial and 6 for the nontrivial solutions)
Answer: The reduced Groebner basis for the ideal $\left\langle x^{2}+y^{2}-1, x y+x+y-1\right\rangle$ with respect to lex order is

$$
\left\{x+\frac{1}{2} y^{3}+\frac{1}{2} y^{2}-1, y^{4}+2 y^{3}+y^{2}-4 y\right\} .
$$

The second generator factors over \mathbb{Q} as $y(y-1)\left(y^{2}+3 y+4\right)$, therefore its roots are 0,1 and $-\frac{3}{2} \pm \frac{1}{2} \sqrt{7}$ i. Inserting these values of y into the first generator - or just using the symmetry of the system of equations with respect to x and y - yields the 4 solutions

$$
(x, y) \in\left\{(0,1),(1,0),\left(-\frac{3}{2}-\frac{1}{2} \sqrt{7} i,-\frac{3}{2}+\frac{1}{2} \sqrt{7} i\right),\left(-\frac{3}{2}+\frac{1}{2} \sqrt{7} i,-\frac{3}{2}-\frac{1}{2} \sqrt{7} i\right)\right\} .
$$

